1,163 research outputs found
Microbial fuel cells: a green and alternative source for bioenergy production
Microbial fuel cell (MFC) represents one of the green technologies for the production of bioenergy. MFCs using microalgae produce bioenergy by converting solar energy into electrical energy as a function of metabolic and anabolic pathways of the cells. In the MFCs with bacteria, bioenergy is generated as a result of the organic substrate oxidation. MFCs have received high attention from researchers in the last years due to the simplicity of the process, the absence in toxic by-products, and low requirements for the algae growth. Many studies have been conducted on MFC and investigated the factors affecting the MFC performance. In the current chapter, the performance of MFC in producing bioenergy as well as the factors which influence the efficacy of MFCs is discussed. It appears that the main factors affecting MFC’s performance include bacterial and algae species, pH, temperature, salinity, substrate, mechanism of electron transfer in an anodic chamber, electrodes materials, surface area, and electron acceptor in a cathodic chamber. These factors are becoming more influential and might lead to overproduction of bioenergy when they are optimized using response surface methodology (RSM)
First step to facilitate long term and multi centre studies of shear wave elastography in solid breast lesions using a computer assisted algorithm
Purpose:
Shear wave elastography (SWE) visualises the elasticity of tissue. As malignant tissue is generally stiffer than benign tissue, SWE is helpful to diagnose solid breast lesions. Until now, quantitative measurements of elasticity parameters have been possible only, while the images were still saved on the ultrasound imaging device. This work aims to overcome this issue and introduces an algorithm allowing fast offline evaluation of SWE images.
Methods:
The algorithm was applied to a commercial phantom comprising three lesions of various elasticities and 207 in vivo solid breast lesions. All images were saved in DICOM, JPG and QDE (quantitative data export; for research only) format and evaluated according to our clinical routine using a computer-aided diagnosis algorithm. The results were compared to the manual evaluation (experienced radiologist and trained engineer) regarding their numerical discrepancies and their diagnostic performance using ROC and ICC analysis.
Results:
ICCs of the elasticity parameters in all formats were nearly perfect (0.861–0.990). AUC for all formats was nearly identical for and (0.863–0.888). The diagnostic performance of SD using DICOM or JPG estimations was lower than the manual or QDE estimation (AUC 0.673 vs. 0.844).
Conclusions:
The algorithm introduced in this study is suitable for the estimation of the elasticity parameters offline from the ultrasound system to include images taken at different times and sites. This facilitates the performance of long-term and multi-centre studies
The Role of TLR4 in the Paclitaxel Effects on Neuronal Growth In Vitro
Paclitaxel (Pac) is an antitumor agent that is widely used for treatment of solid cancers. While being effective as a chemotherapeutic agent, Pac in high doses is neurotoxic, specifically targeting sensory innervations. In view of these toxic effects associated with conventional chemotherapy, decreasing the dose of Pac has been recently suggested as an alternative approach, which might limit neurotoxicity and immunosuppression. However, it remains unclear if low doses of Pac retain its neurotoxic properties or might exhibit unusual effects on neuronal cells. The goal of this study was to analyze the concentration-dependent effect of Pac on isolated and cultured DRG neuronal cells from wild-type and TLR4 knockout mice. Three different morphological parameters were analyzed: the number of neurons which developed neurites, the number of neurites per cell and the total length of neurites per cell. Our data demonstrate that low concentrations of Pac (0.1 nM and 0.5 nM) do not influence the neuronal growth in cultures in both wild type and TLR4 knockout mice. Higher concentrations of Pac (1-100 nM) had a significant effect on DRG neurons from wild type mice, affecting the number of neurons which developed neurites, number of neurites per cell, and the length of neurites. In DRG from TLR4 knockout mice high concentrations of Pac showed a similar effect on the number of neurons which developed neurites and the length of neurites. At the same time, the number of neurites per cell, indicating the process of growth cone initiation, was not affected by high concentrations of Pac. Thus, our data showed that Pac in high concentrations has a significant damaging effect on axonal growth and that this effect is partially mediated through TLR4 pathways. Low doses of Pac are devoid of neuronal toxicity and thus can be safely used in a chemomodulation mode. © 2013 Ustinova et al
POMK regulates dystroglycan function via LARGE-mediated elongation of matriglycan
Matriglycan [-GlcA-β1,3-Xyl-α1,3-]n serves as a scaffold in many tissues for extracellular matrix proteins containing laminin-G domains including laminin, agrin, and perlecan. Like-acetylglucosaminyltransferase-1 (LARGE1) synthesizes and extends matriglycan on α-dystroglycan (α-DG) during skeletal muscle differentiation and regeneration; however, the mechanisms which regulate matriglycan elongation are unknown. Here, we show that Protein O-Mannose Kinase (POMK), which phosphorylates mannose of core M3 (GalNac-β1,3-GlcNac-β1,4-Man) preceding matriglycan synthesis, is required for LARGE1-mediated generation of full-length matriglycan on α-DG (~150 kDa). In the absence of Pomk in mouse skeletal muscle, LARGE1 synthesizes a very short matriglycan resulting in a ~90 kDa α-DG which binds laminin but cannot prevent eccentric contraction-induced force loss or muscle pathology. Solution NMR spectroscopy studies demonstrate that LARGE1 directly interacts with core M3 and binds preferentially to the phosphorylated form. Collectively, our study demonstrates that phosphorylation of core M3 by POMK enables LARGE1 to elongate matriglycan on α-DG, thereby preventing muscular dystrophy
Nerve Growth Factor Stimulates Interaction of Cayman Ataxia Protein BNIP-H/Caytaxin with Peptidyl-Prolyl Isomerase Pin1 in Differentiating Neurons
Mutations in ATCAY that encodes the brain-specific protein BNIP-H (or Caytaxin) lead to Cayman cerebellar ataxia. BNIP-H binds to glutaminase, a neurotransmitter-producing enzyme, and affects its activity and intracellular localization. Here we describe the identification and characterization of the binding between BNIP-H and Pin1, a peptidyl-prolyl cis/trans isomerase. BNIP-H interacted with Pin1 after nerve growth factor-stimulation and they co-localized in the neurites and cytosol of differentiating pheochromocytoma PC12 cells and the embryonic carcinoma P19 cells. Deletional mutagenesis revealed two cryptic binding sites within the C-terminus of BNIP-H such that single point mutants affecting the WW domain of Pin1 completely abolished their binding. Although these two sites do not contain any of the canonical Pin1-binding motifs they showed differential binding profiles to Pin1 WW domain mutants S16E, S16A and W34A, and the catalytically inert C113A of its isomerase domain. Furthermore, their direct interaction would occur only upon disrupting the ability of BNIP-H to form an intramolecular interaction by two similar regions. Furthermore, expression of Pin1 disrupted the BNIP-H/glutaminase complex formation in PC12 cells under nerve growth factor-stimulation. These results indicate that nerve growth factor may stimulate the interaction of BNIP-H with Pin1 by releasing its intramolecular inhibition. Such a mechanism could provide a post-translational regulation on the cellular activity of BNIP-H during neuronal differentiation. (213 words
Dephosphorylated NSSR1 Is Induced by Androgen in Mouse Epididymis and Phosphorylated NSSR1 Is Increased during Sperm Maturation
NSSR1 (Neural salient serine/arginine rich protein 1, alternatively SRp38) is a newly identified RNA splicing factor and predominantly expressed in neural tissues. Here, by Western blot analysis and immunofluorescent staining, we showed that the expression of dephosphorylated NSSR1 increased significantly during development of the caput epididymis. In adult mice, phosphorylated NSSR1 was mainly expressed in the apical side of epithelial cells, and dephosphorylated NSSR1 in caput epididymis was upregulated in a testosterone dependent manner. In addition, subcellular immunoreactive distribution of NSSR1 varied in different regions of the epididymis. With respect to the sperm, phosphorylated NSSR1 was detected in the mid-piece of the tail as well as the acrosome. Furthermore, NSSR1 was released from the sperm head during the capacitation and acrosome reaction. These findings for the first time provide the evidence for the potential roles of NSSR1 in sperm maturation and fertilization
Design of Experiments for Screening
The aim of this paper is to review methods of designing screening
experiments, ranging from designs originally developed for physical experiments
to those especially tailored to experiments on numerical models. The strengths
and weaknesses of the various designs for screening variables in numerical
models are discussed. First, classes of factorial designs for experiments to
estimate main effects and interactions through a linear statistical model are
described, specifically regular and nonregular fractional factorial designs,
supersaturated designs and systematic fractional replicate designs. Generic
issues of aliasing, bias and cancellation of factorial effects are discussed.
Second, group screening experiments are considered including factorial group
screening and sequential bifurcation. Third, random sampling plans are
discussed including Latin hypercube sampling and sampling plans to estimate
elementary effects. Fourth, a variety of modelling methods commonly employed
with screening designs are briefly described. Finally, a novel study
demonstrates six screening methods on two frequently-used exemplars, and their
performances are compared
Temperature induced crossing in the optical bandgap of mono and bilayer MoS2 on SiO2
Photoluminescence measurements in mono- and bilayer-MoS2 on SiO2 were undertaken to determine the thermal effect of the MoS2/SiO2 interface on the optical bandgap. The energy and intensity of the photoluminescence from monolayer MoS2 were lower and weaker than those from bilayer MoS2 at low temperatures, whilst the opposite was true at high temperatures above 200 K. Density functional theory calculations suggest that the observed optical bandgap crossover is caused by a weaker substrate coupling to the bilayer than to the monolayer
GSK-3β Controls Osteogenesis through Regulating Runx2 Activity
Despite accumulated knowledge of various signalings regulating bone formation, the molecular network has not been clarified sufficiently to lead to clinical application. Here we show that heterozygous glycogen synthase kinase-3β (GSK-3β)-deficient mice displayed an increased bone formation due to an enhanced transcriptional activity of Runx2 by suppressing the inhibitory phosphorylation at a specific site. The cleidocranial dysplasia in heterozygous Runx2-deficient mice was significantly rescued by the genetic insufficiency of GSK-3β or the oral administration of lithium chloride, a selective inhibitor of GSK-3β. These results establish GSK-3β as a key attenuator of Runx2 activity in bone formation and as a potential molecular target for clinical treatment of bone catabolic disorders like cleidocranial dysplasia
- …