12 research outputs found

    Reducing bias in auditory duration reproduction by integrating the reproduced signal

    Get PDF
    Duration estimation is known to be far from veridical and to differ for sensory estimates and motor reproduction. To investigate how these differential estimates are integrated for estimating or reproducing a duration and to examine sensorimotor biases in duration comparison and reproduction tasks, we compared estimation biases and variances among three different duration estimation tasks: perceptual comparison, motor reproduction, and auditory reproduction (i.e. a combined perceptual-motor task). We found consistent overestimation in both motor and perceptual-motor auditory reproduction tasks, and the least overestimation in the comparison task. More interestingly, compared to pure motor reproduction, the overestimation bias was reduced in the auditory reproduction task, due to the additional reproduced auditory signal. We further manipulated the signal-to-noise ratio (SNR) in the feedback/comparison tones to examine the changes in estimation biases and variances. Considering perceptual and motor biases as two independent components, we applied the reliability-based model, which successfully predicted the biases in auditory reproduction. Our findings thus provide behavioral evidence of how the brain combines motor and perceptual information together to reduce duration estimation biases and improve estimation reliability

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    Sumoylation of ING2 regulates the transcription mediated by Sin3A.

    No full text
    International audienceING2 (inhibitor of growth 2) is a candidate tumor-suppressor gene involved in cell cycle control, apoptosis and senescence. Although the functions of ING2 within the chromatin remodeling complex Sin3A/histone deacetylase (HDAC) and in the p53 pathway have been described, how ING2 itself is regulated remains unknown. In this study we report for the first time that ING2 can be sumoylated by small ubiquitin-like modifier 1 (SUMO1) on lysine 195 both in vitro and in vivo. Strikingly, ING2 sumoylation enhances its association with Sin3a. We provide evidences that ING2 can bind to the promoter of genes to mediate their expression and that sumoylation of ING2 is required for this binding to some of these genes. Among them, we identified the gene TMEM71 (transmembrane protein 71), whose expression is regulated by ING2 sumoylation. ING2 must be sumoylated to bind to the promoter of TMEM71 and to recruit the Sin3A chromatin-modifying complex to this promoter, in order to regulate TMEM71 transcription. Hence, sumoylation of ING2 enhances its binding to the Sin3A/HDAC complex and is required to regulate gene transcriptions
    corecore