226 research outputs found

    Hyperspectral Imaging: a New Modality in Surgery

    Get PDF
    Non

    A THREE-PHASE INDUCTIVE SENSOR FOR IN VIVO MEASUREMENT OF ELECTRICAL ANISOTROPY OF BIOLOGICAL TISSUES

    Get PDF
    Biological tissue will have anisotropy in electrical conductivity, due to the orientation of muscular fibers or neural axons as well as the distribution of large size blood vessels. Thus, the in vivo measurement of electrical conductivity anisotropy can be used to detect deep-seated vessels in large organs such as the liver during surgeries. For diagnostic applications, decrease of anisotropy may indicate the existence of cancer in anisotropic tissues such as the white matter of the brain or the mammary gland in the breast.In this paper, we will introduce a new tri-phase induction method to drive rotating high-frequency electrical current in the tissue for the measurement of electrical conductivity anisotropy. In the measurement, three electromagnets are symmetrically placed on the tissue surface and driven by high-frequency alternative currents of  0 kHz, modulated  with 1 kHz 3-phase signals. In the center area of three magnets, magnetic fields are superimposed to produce a rotating induction current. This current produces electrical potentials among circularly arranged electrodes to be used to find the conductivity in each direction determined by the electrode pairs. To find the horizontal and vertical signal components, the measured potentials are amplified by a 2ch lock-in amplifier phase-locked with the 1 kHz reference signal. The superimposed current in the tissue was typically 45 micro Amperes when we applied 150 micro Tesla of magnetic field. We showed the validity of our method by conducting in vitro measurements with respect to artificially formed anisotropic materials and preliminary in vivo measurements on the pig’s liver.Compared to diffusion tensor MRI method, our anisotropy sensor is compact and advantageous for use during surgical operations because our method does not require strong magnetic field that may disturb ongoing surgical operations.Biological tissue will have anisotropy in electrical conductivity, due to the orientation of muscular fibers or neural axons as well as the distribution of large size blood vessels. Thus, the in vivo measurement of electrical conductivity anisotropy can be used to detect deep-seated vessels in large organs such as the liver during surgeries. For diagnostic applications, decrease of anisotropy may indicate the existence of cancer in anisotropic tissues such as the white matter of the brain or the mammary gland in the breast.In this paper, we will introduce a new tri-phase induction method to drive rotating high-frequency electrical current in the tissue for the measurement of electrical conductivity anisotropy. In the measurement, three electromagnets are symmetrically placed on the tissue surface and driven by high-frequency alternative currents of  0 kHz, modulated  with 1 kHz 3-phase signals. In the center area of three magnets, magnetic fields are superimposed to produce a rotating induction current. This current produces electrical potentials among circularly arranged electrodes to be used to find the conductivity in each direction determined by the electrode pairs. To find the horizontal and vertical signal components, the measured potentials are amplified by a 2ch lock-in amplifier phase-locked with the 1 kHz reference signal. The superimposed current in the tissue was typically 45 micro Amperes when we applied 150 micro Tesla of magnetic field. We showed the validity of our method by conducting in vitro measurements with respect to artificially formed anisotropic materials and preliminary in vivo measurements on the pig’s liver.Compared to diffusion tensor MRI method, our anisotropy sensor is compact and advantageous for use during surgical operations because our method does not require strong magnetic field that may disturb ongoing surgical operations

    Large-Scale Gene Disruption in Magnaporthe oryzae Identifies MC69, a Secreted Protein Required for Infection by Monocot and Dicot Fungal Pathogens

    Get PDF
    To search for virulence effector genes of the rice blast fungus, Magnaporthe oryzae, we carried out a large-scale targeted disruption of genes for 78 putative secreted proteins that are expressed during the early stages of infection of M. oryzae. Disruption of the majority of genes did not affect growth, conidiation, or pathogenicity of M. oryzae. One exception was the gene MC69. The mc69 mutant showed a severe reduction in blast symptoms on rice and barley, indicating the importance of MC69 for pathogenicity of M. oryzae. The mc69 mutant did not exhibit changes in saprophytic growth and conidiation. Microscopic analysis of infection behavior in the mc69 mutant revealed that MC69 is dispensable for appressorium formation. However, mc69 mutant failed to develop invasive hyphae after appressorium formation in rice leaf sheath, indicating a critical role of MC69 in interaction with host plants. MC69 encodes a hypothetical 54 amino acids protein with a signal peptide. Live-cell imaging suggested that fluorescently labeled MC69 was not translocated into rice cytoplasm. Site-directed mutagenesis of two conserved cysteine residues (Cys36 and Cys46) in the mature MC69 impaired function of MC69 without affecting its secretion, suggesting the importance of the disulfide bond in MC69 pathogenicity function. Furthermore, deletion of the MC69 orthologous gene reduced pathogenicity of the cucumber anthracnose fungus Colletotrichum orbiculare on both cucumber and Nicotiana benthamiana leaves. We conclude that MC69 is a secreted pathogenicity protein commonly required for infection of two different plant pathogenic fungi, M. oryzae and C. orbiculare pathogenic on monocot and dicot plants, respectively
    corecore