12 research outputs found

    Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes

    Get PDF
    BACKGROUND: Data are lacking on the long-term effect on cardiovascular events of adding sitagliptin, a dipeptidyl peptidase 4 inhibitor, to usual care in patients with type 2 diabetes and cardiovascular disease. METHODS: In this randomized, double-blind study, we assigned 14,671 patients to add either sitagliptin or placebo to their existing therapy. Open-label use of antihyperglycemic therapy was encouraged as required, aimed at reaching individually appropriate glycemic targets in all patients. To determine whether sitagliptin was noninferior to placebo, we used a relative risk of 1.3 as the marginal upper boundary. The primary cardiovascular outcome was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. RESULTS: During a median follow-up of 3.0 years, there was a small difference in glycated hemoglobin levels (least-squares mean difference for sitagliptin vs. placebo, -0.29 percentage points; 95% confidence interval [CI], -0.32 to -0.27). Overall, the primary outcome occurred in 839 patients in the sitagliptin group (11.4%; 4.06 per 100 person-years) and 851 patients in the placebo group (11.6%; 4.17 per 100 person-years). Sitagliptin was noninferior to placebo for the primary composite cardiovascular outcome (hazard ratio, 0.98; 95% CI, 0.88 to 1.09; P<0.001). Rates of hospitalization for heart failure did not differ between the two groups (hazard ratio, 1.00; 95% CI, 0.83 to 1.20; P = 0.98). There were no significant between-group differences in rates of acute pancreatitis (P = 0.07) or pancreatic cancer (P = 0.32). CONCLUSIONS: Among patients with type 2 diabetes and established cardiovascular disease, adding sitagliptin to usual care did not appear to increase the risk of major adverse cardiovascular events, hospitalization for heart failure, or other adverse events

    ANTIBIOTIC PRODUCTION BY STREPTOMYCES HYGROSCOPICUS D1.5: CULTURAL EFFECT

    No full text
    In an attempt to screen out new potent antibiotic producers from soil, Streptomyces hygroscopicus D1.5 was isolated and was found antagonistic to both bacteria and fungi. It could utilise arginine as nitrogen source and glycerol as carbon source at 0.75 g/l and 11.5 g/l level, respectively for maximum antibiotic yield

    Produção de mudas de tomateiro em substrato orgânico inoculado e incubado com estreptomicetos Tomato seedlings grown in organic potting mix inoculated and incubated with streptomycetes

    No full text
    Este trabalho teve como objetivo avaliar a inoculação e incubação do substrato Plantmax® Hortaliças de produção de mudas, com diferentes isolados de estreptomicetos no crescimento de mudas de tomateiro. No primeiro ensaio, avaliou-se a inoculação de quatro isolados de actinomicetos e a testemunha não inoculada, sem incubação e com 20 dias de incubação, em esquema fatorial (5 x 2) e delineamento experimental de blocos casualizados, com 15 repetições. A inoculação e incubação do substrato com os estreptomicetos promoveram o aumento na altura das plantas, a produção de massa seca da parte aérea e raízes e o acúmulo de nutrientes na parte aérea das mudas de tomateiro. No segundo ensaio, avaliou-se a inoculação dos dois melhores estreptomicetos na promoção do crescimento das plantas de tomateiro produzidas em substrato orgânico incubado por cinco períodos diferentes (0, 15, 30, 45 e 60 dias), em esquema fatorial 2 x 5 e delineamento inteiramente casualizado, com oito repetições. Quarenta e três dias foi o melhor período para incubação, provavelmente, por ser o tempo necessário para que os estreptomicetos pudessem colonizar e atuar na decomposição do substrato orgânico, disponibilizando nutrientes para as raízes e permitindo o crescimento vegetal.<br>This work had the objective of evaluating the effect of inoculation and incubation of a potting soil with streptomycetes in growth promotion of tomato seedlings. The first experiment was conducted with four streptomycete isolates, with and without incubation for 20 days. The experimental design was entirely randomized with 15 replications, in a factorial squeme (5 x 2). The inoculation and incubation of the potting mix promotted a significant increase in plant height, root and shoot dry weight, and plant nutrient levels. In the second experiment, the inoculation with the two best isolates, in five different incubation periods (0, 15, 30, 45 and 60 days) was evaluated for growth of tomato seedlings in the same potting growth mix, using an entirely randomized experimental design with 8 replications and a factorial scheme 3 x 5. Forty three days was considered to be the best incubation period, suggesting that this may be the time necessary for the streptomycete isolates to colonize and act in the decomposition of the organic matter, improving nutrient uptake by the roots, and promoting plant growth

    Characterization of the Genome of the Polyvalent Lytic Bacteriophage GTE2, Which Has Potential for Biocontrol of Gordonia-, Rhodococcus-, and Nocardia-Stabilized Foams in Activated Sludge Plants ▿ †

    No full text
    Hydrophobic Actinobacteria are commonly associated with the stabilization of foams in activated sludge systems. One possible attractive approach to control these foam-stabilizing organisms is the use of specific bacteriophages. We describe the genome characterization of a novel polyvalent DNA phage, GTE2, isolated from activated sludge. This phage is lytic for Gordonia terrae, Rhodococcus globerulus, Rhodococcus erythropolis, Rhodococcus erythropolis, Nocardia otitidiscaviarum, and Nocardia brasiliensis. Phage GTE2 belongs to the family Siphoviridae, possessing a characteristic icosahedral head encapsulating a double-stranded DNA linear genome (45,530 bp) having 10-bp 3′-protruding cohesive ends. The genome sequence is 98% unique at the DNA level and contains 57 putative genes. The genome can be divided into two components, where the first is modular and encodes phage structural proteins and lysis genes. The second is not modular, and the genes harbored there are involved in DNA replication, repair, and metabolism. Some have no known function. GTE2 shows promising results in controlling stable foam production by its host bacteria under laboratory conditions, suggesting that it may prove useful in the field as a biocontrol agent

    The Family Streptomycetaceae

    No full text
    The family Streptomycetaceae comprises the genera Streptomyces, Kitasatospora, and Streptacidiphilus that are very difficult to differentiate both with genotypic and phenotypic characteristics. A separate generic status for Kitasatospora and Streptacidiphilus is questionable. Members of the family can be characterized as non-acid-alcohol-fast actinomycetes that generate most often an extensively branched substrate mycelium that rarely fragments. At maturity, the aerial mycelium forms chains of few to many spores. A large variety of pigments is produced, responsible for the color of the substrate and aerial mycelium. The organisms are chemoorganotrophic with an oxidative type of metabolism and grow within different pH ranges. Streptomyces are notable for their complex developmental cycle and production of bioactive secondary metabolites, producing more than a third of commercially available antibiotics. Antibacterial, antifungal, antiparasitic, and immunosuppressant compounds have been identified as products of Streptomyces secondary metabolism. Streptomyces can be distinguished from other filamentous actinomycetes on the basis of morphological characteristics, in particular by vegetative mycelium, aerial mycelium, and arthrospores. The genus comprises at the time of writing more than 600 species with validated names. 16S rRNA gene sequence-based analysis for species delineation within the Streptomycetaceae is of limited value. The variations within the 16S rRNA genes—even in the variable regions—are too small to resolve problems of species differentiation and to establish a taxonomic structure within the genus. Comprehensive comparative studies including protein-coding gene sequences with higher phylogenetic resolution and genome-based studies are needed to clarify the species delineation within the Streptomycetaceae
    corecore