221 research outputs found

    A synthetic biochemistry platform for cell free production of monoterpenes from glucose.

    Get PDF
    Cell-free systems designed to perform complex chemical conversions of biomass to biofuels or commodity chemicals are emerging as promising alternatives to the metabolic engineering of living cells. Here we design a system comprises 27 enzymes for the conversion of glucose into monoterpenes that generates both NAD(P)H and ATP in a modified glucose breakdown module and utilizes both cofactors for building terpenes. Different monoterpenes are produced in our system by changing the terpene synthase enzyme. The system is stable for the production of limonene, pinene and sabinene, and can operate continuously for at least 5 days from a single addition of glucose. We obtain conversion yields >95% and titres >15 g l-1. The titres are an order of magnitude over cellular toxicity limits and thus difficult to achieve using cell-based systems. Overall, these results highlight the potential of synthetic biochemistry approaches for producing bio-based chemicals

    Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme.

    Get PDF
    Most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase, Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes

    An Adaptation To Life In Acid Through A Novel Mevalonate Pathway.

    Get PDF
    Extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previously identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments

    Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial

    Get PDF
    Objective: Assess ustekinumab efficacy (week 24/week 52) and safety (week 16/week 24/week 60) in patients with active psoriatic arthritis (PsA) despite treatment with conventional and/or biological anti-tumour necrosis factor (TNF) agents. Methods: In this phase 3, multicentre, placebo-controlled trial, 312 adults with active PsA were randomised (stratified by site, weight (≤100 kg/>100 kg), methotrexate use) to ustekinumab 45 mg or 90 mg at week 0, week 4, q12 weeks or placebo at week 0, week 4, week 16 and crossover to ustekinumab 45 mg at week 24, week 28 and week 40. At week 16, patients with <5% improvement in tender/swollen joint counts entered blinded early escape (placebo→45 mg, 45 mg→90 mg, 90 mg→90 mg). The primary endpoint was ≥20% improvement in American College of Rheumatology (ACR20) criteria at week 24. Secondary endpoints included week 24 Health Assessment Questionnaire-Disability Index (HAQ-DI) improvement, ACR50, ACR70 and ≥75% improvement in Psoriasis Area and Severity Index (PASI75). Efficacy was assessed in all patients, anti-TNF-naïve (n=132) patients and anti-TNF-experienced (n=180) patients. Results: More ustekinumab-treated (43.8% combined) than placebo-treated (20.2%) patients achieved ACR20 at week 24 (p<0.001). Significant treatment differences were observed for week 24 HAQ-DI improvement (p<0.001), ACR50 (p≤0.05) and PASI75 (p<0.001); all benefits were sustained through week 52. Among patients previously treated with ≥1 TNF inhibitor, sustained ustekinumab efficacy was also observed (week 24 combined vs placebo: ACR20 35.6% vs 14.5%, PASI75 47.1% vs 2.0%, median HAQ-DI change −0.13 vs 0.0; week 52 ustekinumab-treated: ACR20 38.9%, PASI75 43.4%, median HAQ-DI change −0.13). No unexpected adverse events were observed through week 60. Conclusions: The interleukin-12/23 inhibitor ustekinumab (45/90 mg q12 weeks) yielded significant and sustained improvements in PsA signs/symptoms in a diverse population of patients with active PsA, including anti-TNF-experienced PsA patients

    Reduced Susceptibility to Interference in the Consolidation of Motor Memory before Adolescence

    Get PDF
    Are children superior to adults in consolidating procedural memory? This notion has been tied to “critical,” early life periods of increased brain plasticity. Here, using a motor sequence learning task, we show, in experiment 1, that a) the rate of learning during a training session, b) the gains accrued, without additional practice, within a 24 hours post-training interval (delayed consolidation gains), and c) the long-term retention of these gains, were as effective in 9, 12 and 17-year-olds and comparable to those reported for adults. However, a follow-up experiment showed that the establishment of a memory trace for the trained sequence of movements was significantly more susceptible to interference by a subsequent motor learning experience (practicing a reversed movement sequence) in the 17-year-olds compared to the 9 and 12-year-olds. Unlike the 17-year-olds, the younger age-groups showed significant delayed gains even after interference training. Altogether, our results indicate the existence of an effective consolidation phase in motor learning both before and after adolescence, with no childhood advantage in the learning or retention of a motor skill. However, the ability to co-consolidate different, successive motor experiences, demonstrated in both the 9 and 12-year-olds, diminishes after puberty, suggesting that a more selective memory consolidation process takes over from the childhood one. Only the adult consolidation process is gated by a recency effect, and in situations of multiple, clashing, experiences occurring within a short time-interval, adults may less effectively establish in memory experiences superseded by newer ones

    7. Biological Effectiveness of 12 C and 20 Ne Ions with Very High LET

    Get PDF
    Knowledge of radiobiological effects of heavy ions at the cellular and molecular level is of fundamental importance in the field of radiation therapy (for example C ions) and space radiation biology (for example Ne ions). One of the issues that require deeper investigations is a determination of RBE values for a wide range of LET, for all relevant doses, for many cell types and various kinds of radiations During recent years, the biological effectiveness of heavy ions has been widely investigated with the aim to identify physical characteristics relevant to biological actions. These investigations are pertinent to the use of heavy ions in radiosurgery and radiotherapy. What has not been investigated so thoroughly is the biological effectiveness of heavy ions at low energies and very high LET values. The LET, which is equal to the stopping power of heavy particles, increases sharply at the end of the particle's path, forming a so-called Bragg peak. The shape of the Bragg peak depends on the particle type. Because overlying beams with different energies and components of primary and secondary particles are used in radiotherapy, the knowledge of RBE values of very high LET radiation need to be well characterized. An experimental set-up designed for such investigations was constructed at the isochronic cyclotron in Heavy Ion Laboratory. A more detailed description of the set-up can be found in Ref. CHO-K1 cells have been used as a suitable biological system for our studies. The cell line is characterized by genetic stability, the ability to form colonies, a relatively rapid growth rate with a cell cycle of 12-14 hours. For exposure to ions the cells were seeded in specially designed Petri dishes, which were filled with medium, sealed by a parafilm cover and placed in a vertical sample holder mounted in an x-y-z table that was connected to a special stepping motor. The irradiated sample moved under the beam according to a planned route. Movement was initiated when the number of counts detected by the 20 o particle detector reached the preset value. When all fields have been exposed the sample holder returned to the start position. Stored information enabled to evaluate the beam stability and intensity. The whole set-up was surveyed by a digital camera. The total time of exposure per dish was between 1-5 min. depending on the dose and beam intensity. The dose rates were changed from 0.05 Gy/min. to 1 Gy/min depending on the dose. Cell survival was estimated according to standard procedure

    Does Sleep Really Influence Face Recognition Memory?

    Get PDF
    Mounting evidence implicates sleep in the consolidation of various kinds of memories. We investigated the effect of sleep on memory for face identity, a declarative form of memory that is indispensable for nearly all social interaction. In the acquisition phase, observers viewed faces that they were required to remember over a variable retention period (0–36 hours). In the test phase, observers viewed intermixed old and new faces and judged seeing each before. Participants were classified according to acquisition and test times into seven groups. Memory strength (d′) and response bias (c) were evaluated. Substantial time spent awake (12 hours or more) during the retention period impaired face recognition memory evaluated at test, whereas sleep per se during the retention period did little to enhance the memory. Wakefulness during retention also led to a tightening of the decision criterion. Our findings suggest that sleep passively and transiently shelters face recognition memory from waking interference (exposure) but does not actively aid in its long-term consolidation
    corecore