3,886 research outputs found
Modeling large Ethernet networks for the ATLAS high level trigger system using parameterized models of switches and nodes
Large local area Ethernet networks are strong candidates to connect data sources and processing nodes in high energy physics experiments. In the high level trigger system of the ATLAS LHC experiment several Gbytes/s of data, distributed over 1700 buffers, have to be delivered to around a thousand processing nodes. Due to the network size, its performance and scalability can only be assessed by modeling. To avoid lengthy simulation runs, and concentrate only on characteristics important for network transfers, the components of the system need to be parameterized. The network performance depends on traffic patterns generated by processing nodes and switching capabilities of the network, we therefore evaluated and modeled both processing nodes and switches. We have developed a parameterized model of a class of switches, where a limited set of parameters, collected from measurements on real devices, is used to model switching characteristics. Another set of simple measurements is used to collect values for parameters used to model processing nodes running the Linux operating system and the TCP/IP communications protocol suite. In this paper we present the set of parameters used in the models together with measuring procedures used to calibrate our models. Calibrated models are used to model small test-bed setups with random traffic to validate our approach
Alignment-related Effects in Forward Proton Experiments at the LHC
The activity in the field of diffractive physics at the Large Hadron Collider
has been constantly increasing. This includes the planning for additional
dedicated apparatus -- horizontal forward proton detectors. This work focuses
on the problems related to the alignment of such devices. The effects of the
misalignment of the detectors on their geometric acceptance and on the
reconstruction of the proton kinematics are studied. The requirements for the
alignment precision are inferred for different types of possible measurements.Comment: 15 pages, 29 figure
Adapting a HEP Application for Running on the Grid
The goal of the EU IST int.eu.grid project is to build middleware facilities which enable the execution of real-time and interactive applications on the Grid. Within this research, relevant support for the HEP application is provided by Virtual Organization, monitoring system, and real-time dispatcher (RTD). These facilities realize the pilot jobs idea that allows to allocate grid resources in advance and to analyze events in real time. In the paper we present HEP Virtual Organization, the details of monitoring, and RTD. We present the way of running the HEP application using the above facilities to fit into the real-time application requirements
The Straw Tube Trackers of the PANDA Experiment
The PANDA experiment will be built at the FAIR facility at Darmstadt
(Germany) to perform accurate tests of the strong interaction through bar pp
and bar pA annihilation's studies. To track charged particles, two systems
consisting of a set of planar, closed-packed, self-supporting straw tube layers
are under construction. The PANDA straw tubes will have also unique
characteristics in term of material budget and performance. They consist of
very thin mylar-aluminized cathodes which are made self-supporting by means of
the operation gas-mixture over-pressure. This solution allows to reduce at
maximum the weight of the mechanical support frame and hence the detector
material budget. The PANDA straw tube central tracker will not only reconstruct
charged particle trajectories, but also will help in low momentum (< 1 GeV)
particle identification via dE/dx measurements. This is a quite new approach
that PANDA tracking group has first tested with detailed Monte Carlo
simulations, and then with experimental tests of detector prototypes. This
paper addresses the design issues of the PANDA straw tube trackers and the
performance obtained in prototype tests.Comment: 7 pages,16 figure
Testing and Modeling Ethernet Switches and Networks for Use in ATLAS High-level Triggers
The ATLAS second level trigger will use a multi-layered LAN network to transfer 5 Gbyte/s detector data from ~1500 buffers to a few hundred processors. A model of the network has been constructed to evaluate its performance. A key component of the network model is a model of an individual switch, reproducing the behavior measured in real devices. A small number of measurable parameters are used to model a variety of commercial Ethernet switches. Using parameters measured on real devices, the impact on the overall network performance is modeled. In the Atlas context, both 100 Mbit and Gigabit Ethernet links are required. A system is described which is capable of characterizing the behavior of commercial switches with the required number of nodes under traffic conditions resembling those to be encountered in the Atlas experiment. Fast Ethernet traffic is provided by a high density, custom built tester based on FPGAs, programmed in Handel-C and VHDL, while the Gigabit Ethernet traffic is generated using Alteon NICs with custom firmware. The system is currently being deployed with 32 100Mbit ports and 16 Gigabit ports, and will be expanded to ~256 nodes of 100 Mbit and ~50 GBE nodes
Simulation studies of annihilation-photon's polarisation via Compton scattering with the J-PET tomograph
J-PET is the first positron-emission tomograph (PET) constructed from plastic
scintillators. It was optimized for the detection of photons from
electron-positron annihilation. Such photons, having an energy of 511 keV,
interact with electrons in plastic scintillators predominantly via the Compton
effect. Compton scattering is at most probable at an angle orthogonal to the
electric field vector of the interacting photon. Thus registration of multiple
photon scatterings with J-PET enables to determine the polarization of the
annihilation photons. In this contribution we present estimates on the physical
limitation in the accuracy of the polarization determination of ~keV
photons with the J-PET detector.Comment: Submitted to Hyperfine Interaction
Determination of the map of efficiency of the J-PET detector with the GATE package
A novel PET detector consisting of strips of polymer scintillators is being
developed by the J-PET Collaboration. The map of efficiency and the map of
geometrical acceptance of the 2-strip J-PET scanner are presented. Map of
efficiency was determined using the Monte Carlo simulation software GATE based
on GEANT4. Both maps were compared using method based on the chi2 test.Comment: 14 pages, 9 figures, proceeding from conference Symposium on Positron
Emission Tomography: http://koza.if.uj.edu.pl/pet-symposium-2013
Processing optimization with parallel computing for the J-PET tomography scanner
The Jagiellonian-PET (J-PET) collaboration is developing a prototype TOF-PET
detector based on long polymer scintillators. This novel approach exploits the
excellent time properties of the plastic scintillators, which permit very
precise time measurements. The very fast, FPGA-based front-end electronics and
the data acquisition system, as well as, low- and high-level reconstruction
algorithms were specially developed to be used with the J-PET scanner. The
TOF-PET data processing and reconstruction are time and resource demanding
operations, especially in case of a large acceptance detector, which works in
triggerless data acquisition mode. In this article, we discuss the parallel
computing methods applied to optimize the data processing for the J-PET
detector. We begin with general concepts of parallel computing and then we
discuss several applications of those techniques in the J-PET data processing.Comment: 8 page
- …