28 research outputs found

    A dilatometric study of the austenite/ferrite interface mobility

    No full text
    Applied Science

    Phase transformations in low-carbon steels ; modelling the kinetics in terms of the interface mobility

    No full text
    The mechanical properties of steel are determined by the microstructure that develops during the production process and is a joint result of effects of chemical composition and of heat treatment. This paper deals with the kinetics of the phase transformation between the high temperature FCC-phase austenite and the low temperature BCC-phase ferrite as it occurs during controlled cooling. In order to predict the transformation kinetics, a physical model has been developed that considers both composition effects and the actual lattice transformation rate. The model is verified against experimental dilatometry data for three lean carbon-manganese steel grades. Notwithstanding the model having no adjustable parameters, it yields adequate simulations of the transformation kinetics

    Rationale and design of the BECA project:Smartwatch-based activation of the chain of survival for out-of-hospital cardiac arrest

    No full text
    AimOut-of-hospital cardiac arrest is a major health problem, and the overall survival rate is low (4.6%–16.4%). The initiation of the current chain of survival depends on the presence of a witness of the cardiac arrest, which is not present in 29.7%–63.4% of the cases. Furthermore, a delay in starting this chain is common in witnessed out-of-hospital cardiac arrest. This project aims to reduce morbidity and mortality due to out-of-hospital cardiac arrest by developing a smartwatch-based solution to expedite the chain of survival in the case of (un)witnessed out-of-hospital cardiac arrest. MethodsWithin the ‘Beating Cardiac Arrest’ project, we aim to develop a demonstrator product that detects out-of-hospital cardiac arrest using photoplethysmography and accelerometer analysis, and autonomously alerts emergency medical services. A target group study will be performed to determine who benefits the most from this product. Furthermore, several clinical studies will be conducted to capture or simulate data on out-of-hospital cardiac arrest cases, as to develop detection algorithms and validate their diagnostic performance. For this, the product will be worn by patients at high risk for out-of-hospital cardiac arrest, by volunteers who will temporarily interrupt blood flow in their arm by inflating a blood pressure cuff, and by patients who undergo cardiac electrophysiologic and implantable cardioverter defibrillator testing procedures. Moreover, studies on psychosocial and ethical acceptability will be conducted, consisting of surveys, focus groups, and interviews. These studies will focus on end-user preferences and needs, to ensure that important individual and societal values are respected in the design process.<br/
    corecore