17,210 research outputs found
Discovery of Long-Lived Shape Isomeric States which Decay by Strongly Retarded High-Energy Particle Radioactivity
The reaction 28Si + 181Ta has been studied at E(Lab) = 125 and 135 MeV.
Coincidences between high energy particles and various X- and gamma-rays from
abnormally long-lived states were observed. e.g. 7.8 - 8.6 MeV alpha-particles
with gamma-rays of a superdeformed band, 5.1 - 5.5 MeV alpha-particles with X-
and gamma-rays of W, Re, and Pt, and 3.88 MeV particles (interpreted as
protons) with 185.8 keV gamma-rays. The data are interpreted in terms of the
production of long-lived (t(1/2) of several months) high spin isomeric states
in the second well of the potential in the parent nuclei, which decay to the
normal states in the daughters, and in the third well of the potential, which
decay to the second well.Comment: 25 pages including 11 figures and 3 table
Coherent Description for Hitherto Unexplained Radioactivities by Super- and Hyperdeformed Isomeric States
Recently long-lived high spin super- and hyperdeformed isomeric states with
unusual radioactive decay properties have been discovered. Based on these newly
observed modes of radioactive decay, consistent interpretations are suggested
for previously unexplained phenomena seen in nature. These are the Po halos,
the low-energy enhanced 4.5 MeV alpha-particle group proposed to be due to an
isotope of a superheavy element with Z = 108, and the giant halos.Comment: 8 pages, 2 figures, 1 table, to be published in Int. J. Mod. Phys.
A Note on Gravitational Baryogenesis
The coupling between Ricci scalar curvature and the baryon number current
dynamically breaks CPT in an expanding universe and leads to baryon asymmetry.
We study the effect of time dependence of equation of state parameter of the
FRW universe on this asymmetry.Comment: 10 pages, accepted for publication in Physical Review
Unjamming a granular hopper by vibration
We present an experimental study of the outflow of a hopper continuously
vibrated by a piezoelectric device. Outpouring of grains can be achieved for
apertures much below the usual jamming limit observed for non vibrated hoppers.
Granular flow persists down to the physical limit of one grain diameter, a
limit reached for a finite vibration amplitude. For the smaller orifices, we
observe an intermittent regime characterized by alternated periods of flow and
blockage. Vibrations do not significantly modify the flow rates both in the
continuous and the intermittent regime. The analysis of the statistical
features of the flowing regime shows that the flow time significantly increases
with the vibration amplitude. However, at low vibration amplitude and small
orifice sizes, the jamming time distribution displays an anomalous statistics
Thermal effects on slow-roll dynamics
A description of the transition from the inflationary epoch to radiation
domination requires the understanding of quantum fields out of thermal
equilibrium, particle creation and thermalisation. This can be studied from
first principles by solving a set of truncated real-time Schwinger-Dyson
equations, written in terms of the mean field (inflaton) and the field
propagators, derived from the two-particle irreducible effective action. We
investigate some aspects of this problem by considering the dynamics of a
slow-rolling mean field coupled to a second quantum field, using a \phi^2\chi^2
interaction. We focus on thermal effects. It is found that interactions lead to
an earlier end of slow-roll and that the evolution afterwards depends on
details of the heatbath.Comment: 25 pages, 11 eps figures. v2: paper reorganized, title changed,
conclusions unchanged, to appear in PR
Van der Waals interactions in the ground state of Mg(BH4)2 from density functional theory
In order to resolve an outstanding discrepancy between experiment and theory
regarding the ground-state structure of Mg(BH4)2, we examine the importance of
long-range dispersive interactions on the compound's thermodynamic stability.
Careful treatment of the correlation effects within a recently developed
nonlocal van der Waals density functional (vdW-DF) leads to a good agreement
with experiment, favoring the {\alpha}-Mg(BH4)2 phase (P6122) and a closely
related Mn(BH4)2-prototype phase (P3112) over a large set of polymorphs at low
temperatures. Our study demonstrates the need to go beyond (semi)local density
functional approximations for a reliable description of crystalline high-valent
metal borohydrides.Comment: Phys. Rev. B, accepted, 7 pages, 4 figure
Nonthermal Supermassive Dark Matter
We discuss several cosmological production mechanisms for nonthermal
supermassive dark matter and argue that dark matter may be elementary particles
of mass much greater than the weak scale. Searches for dark matter should not
be limited to weakly interacting particles with mass of the order of the weak
scale, but should extend into the supermassive range as well.Comment: 11 page LaTeX file. No major changes. Version accepted by PR
Gravitational waves from first order phase transitions during inflation
We study the production, spectrum and detectability of gravitational waves in
models of the early Universe where first order phase transitions occur during
inflation. We consider all relevant sources. The self-consistency of the
scenario strongly affects the features of the waves. The spectrum appears to be
mainly sourced by collisions of bubble of the new phases, while plasma dynamics
(turbulence) and the primordial gauge fields connected to the physics of the
transitions are generally subdominant. The amplitude and frequency dependence
of the spectrum for modes that exit the horizon during inflation are different
from those of the waves produced by quantum vacuum oscillations of the metric
or by first order phase transitions not occurring during inflation. A moderate
number of slow (but still successful) phase transitions can leave detectable
marks in the CMBR, but the signal weakens rapidly for faster transitions. When
the number of phase transitions is instead large, the primordial gravitational
waves can be observed both in the CMBR or with LISA (marginally) and especially
DECIGO. We also discuss the nucleosynthesis bound and the constraints it places
on the parameters of the models.Comment: minor changes in the text and the references to match the published
versio
Sub-eV scalar dark matter through the super-renormalizable Higgs portal
The Higgs portal of the Standard Model provides the opportunity for coupling
to a very light scalar field via the super-renormalizable operator
. This allows for the existence of a very light scalar dark
matter that has coherent interaction with the Standard Model particles and yet
has its mass protected against radiative corrections. We analyze ensuing
constraints from the fifth-force measurements, along with the cosmological
requirements. We find that the detectable level of the fifth-force can be
achieved in models with low inflationary scales, and certain amount of
fine-tuning in the initial deviation of from its minimum.Comment: 6 pages, 3 figures. References added in the revised version
- …
