318 research outputs found

    Anisotropic Dark Energy and the Generalized Second Law of Thermodynamics

    Full text link
    We consider a Bianchi type II model in which anisotropic dark energy is interacting with dark matter and anisotropic radiation. With this scenario, we investigate the validity of the generalized second law of thermodynamics. It is concluded that the validity of this law depends on different parameters like shear, skewness and equation of state.Comment: 12 pages, accepted for publication in Phys. Scr. arXiv admin note: text overlap with arXiv:1008.0692 and arXiv:1106.241

    Generalized Holographic Dark Energy Model

    Full text link
    In this paper, the model of holographic Chaplygin gas has been extended to two general cases: first is the case of modified variable Chaplygin gas and secondly of the viscous generalized Chaplygin gas. The dynamics of the model are expressed by the use of scalar fields and the scalar potentials.Comment: 12 pages, to appear in Eur. Phys. J.

    On compatibility of string effective action with an accelerating universe

    Full text link
    In this paper, we fully investigate the cosmological effects of the moduli dependent one-loop corrections to the gravitational couplings of the string effective action to explain the cosmic acceleration problem in early (and/or late) universe. These corrections comprise a Gauss-Bonnet (GB) invariant multiplied by universal non-trivial functions of the common modulus σ\sigma and the dilaton ϕ\phi. The model exhibits several features of cosmological interest, including the transition between deceleration and acceleration phases. By considering some phenomenologically motivated ansatzs for one of the scalars and/or the scale factor (of the universe), we also construct a number of interesting inflationary potentials. In all examples under consideration, we find that the model leads only to a standard inflation (w1w \geq -1) when the numerical coefficient δ\delta associated with modulus-GB coupling is positive, while the model can lead also to a non-standard inflation (w<1w<-1), if δ\delta is negative. In the absence of (or trivial) coupling between the GB term and the scalars, there is no crossing between the w1w -1 phases, while this is possible with non-trivial GB couplings, even for constant dilaton phase of the standard picture. Within our model, after a sufficient amount of e-folds of expansion, the rolling of both fields ϕ\phi and σ\sigma can be small. In turn, any possible violation of equivalence principle or deviations from the standard general relativity may be small enough to easily satisfy all astrophysical and cosmological constraints.Comment: 30 pages, 8 figures; v2 significant changes in notations, appendix and refs added; v3 significant revisions, refs added; v4 appendix extended, new refs, published versio

    Occupational exposure and markers of genetic damage, systemic inflammation and lung function: a Danish cross-sectional study among air force personnel

    Get PDF
    Air force ground crew personnel are potentially exposed to fuels and lubricants, as raw materials, vapours and combustion exhaust emissions, during operation and maintenance of aircrafts. This study investigated exposure levels and biomarkers of effects for employees at a Danish air force military base. We enrolled self-reported healthy and non-smoking employees (n = 79) and grouped them by exposure based on job function, considered to be potentially exposed (aircraft engineers, crew chiefs, fuel operators and munition specialists) or as reference group with minimal occupational exposure (avionics and office workers). We measured exposure levels to polycyclic aromatic hydrocarbons (PAHs) and organophosphate esters (OPEs) by silicone bands and skin wipes (PAHs only) as well as urinary excretion of PAH metabolites (OH-PAHs). Additionally, we assessed exposure levels of ultrafine particles (UFPs) in the breathing zone for specific job functions. As biomarkers of effect, we assessed lung function, plasma levels of acute phase inflammatory markers, and genetic damage levels in peripheral blood cells. Exposure levels of total PAHs, OPEs and OH-PAHs did not differ between exposure groups or job functions, with low correlations between PAHs in different matrices. Among the measured job functions, the UFP levels were higher for the crew chiefs. The exposure level of the PAH fluorene was significantly higher for the exposed group than the reference group (15.9 +/- 23.7 ng/g per 24 h vs 5.28 +/- 7.87 ng/g per 24 h, p = 0.007), as was the OPE triphenyl phosphate (305 +/- 606 vs 19.7 +/- 33.8 ng/g per 24 h, p = 0.011). The OPE tris(1, 3-dichlor-2-propyl)phosphate had a higher mean in the exposed group (60.7 +/- 135 ng/g per 24 h) compared to the reference group (8.89 +/- 15.7 ng/g per 24 h) but did not reach significance. No evidence of effects for biomarkers of systemic inflammation, genetic damage or lung function was found. Overall, our biomonitoring study show limited evidence of occupational exposure of air force ground crew personnel to UFPs, PAHs and OPEs. Furthermore, the OH-PAHs and the assessed biomarkers of early biological effects did not differ between exposed and reference groups

    Shape coexistence at the proton drip-line: First identification of excited states in 180Pb

    Full text link
    Excited states in the extremely neutron-deficient nucleus, 180Pb, have been identified for the first time using the JUROGAM II array in conjunction with the RITU recoil separator at the Accelerator Laboratory of the University of Jyvaskyla. This study lies at the limit of what is presently achievable with in-beam spectroscopy, with an estimated cross-section of only 10 nb for the 92Mo(90Zr,2n)180Pb reaction. A continuation of the trend observed in 182Pb and 184Pb is seen, where the prolate minimum continues to rise beyond the N=104 mid-shell with respect to the spherical ground state. Beyond mean-field calculations are in reasonable correspondence with the trends deduced from experiment.Comment: 5 pages, 4 figures, submitted to Phys.Rev.

    Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter

    Full text link
    The Bianchi type III dark energy models with constant deceleration parameter are investigated. The equation of state parameter ω\omega is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical aspect of the dark energy models are discussed.Comment: 12 pages, 2 figures, Accepted version of IJT

    Constraints on coupling constant between dark energy and dark matter

    Full text link
    We have investigated constraints on the coupling between dark matter and the interacting Chaplygin gas. Our results indicate that the coupling constant cc between these two entities can take arbitrary values, which can be either positive or negative, thus giving arbitrary freedom to the inter-conversion between Chaplygin gas and dark matter. Thus our results indicate that the restriction 0<c<10<c<1 on the coupling constant occurs as a very special case. Our analysis also supports the existence of phantom energy under certain conditions on the coupling constant.Comment: 16 Pages, 3 figure

    A mathematical analysis of the evolution of perturbations in a modified Chaplygin gas model

    Get PDF
    One approach in modern cosmology consists in supposing that dark matter and dark energy are different manifestations of a single `quartessential' fluid. Following such idea, this work presents a study of the evolution of perturbations of density in a flat cosmological model with a modified Chaplygin gas acting as a single component. Our goal is to obtain properties of the model which can be used to distinguish it from another cosmological models which have the same solutions for the general evolution of the scale factor of the universe, without the construction of the power spectrum. Our analytical results, which alone can be used to uniquely characterize the specific model studied in our work, show that the evolution of the density contrast can be seen, at least in one particular case, as composed by a spheroidal wave function. We also present a numerical analysis which clearly indicates as one interesting feature of the model the appearence of peaks in the evolution of the density constrast.Comment: 21 pages, accepted for publication in General Relativity and Gravitatio

    Screening of cosmological constant for De Sitter Universe in non-local gravity, phantom-divide crossing and finite-time future singularities

    Full text link
    We investigate de Sitter solutions in non-local gravity as well as in non-local gravity with Lagrange constraint multiplier. We examine a condition to avoid a ghost and discuss a screening scenario for a cosmological constant in de Sitter solutions. Furthermore, we explicitly demonstrate that three types of the finite-time future singularities can occur in non-local gravity and explore their properties. In addition, we evaluate the effective equation of state for the universe and show that the late-time accelerating universe may be effectively the quintessence, cosmological constant or phantom-like phases. In particular, it is found that there is a case in which a crossing of the phantom divide from the non-phantom (quintessence) phase to the phantom one can be realized when a finite-time future singularity occurs. Moreover, it is demonstrated that the addition of an R2R^2 term can cure the finite-time future singularities in non-local gravity. It is also suggested that in the framework of non-local gravity, adding an R2R^2 term leads to possible unification of the early-time inflation with the late-time cosmic acceleration.Comment: 42 pages, no figure, version accepted for publication in General Relativity and Gravitatio

    Reconstruction of the equation of state for the cyclic universes in homogeneous and isotropic cosmology

    Full text link
    We study the cosmological evolutions of the equation of state (EoS) for the universe in the homogeneous and isotropic Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) space-time. In particular, we reconstruct the cyclic universes by using the Weierstrass and Jacobian elliptic functions. It is explicitly illustrated that in several models the universe always stays in the non-phantom (quintessence) phase, whereas there also exist models in which the crossing of the phantom divide can be realized in the reconstructed cyclic universes.Comment: 29 pages, 8 figures, version accepted for publication in Central European Journal of Physic
    corecore