10,259 research outputs found

    Edge Electron Gas

    Full text link
    The uniform electron gas, the traditional starting point for density-based many-body theories of inhomogeneous systems, is inappropriate near electronic edges. In its place we put forward the appropriate concept of the edge electron gas.Comment: 4 pages RevTex with 7 ps-figures included. Minor changes in title,text and figure

    Optically induced spin to charge transduction in donor spin read-out

    Full text link
    The proposed read-out configuration D+D- for the Kane Si:P architecture[Nature 393, 133 (1998)] depends on spin-dependent electron tunneling between donors, induced adiabatically by surface gates. However, previous work has shown that since the doubly occupied donor state is so shallow the dwell-time of the read-out state is less than the required time for measurement using a single electron transistor (SET). We propose and analyse single-spin read-out using optically induced spin to charge transduction, and show that the top gate biases, required for qubit selection, are significantly less than those demanded by the Kane scheme, thereby increasing the D+D- lifetime. Implications for singlet-triplet discrimination for electron spin qubits are also discussed.Comment: 8 pages, 10 figures; added reference, corrected typ

    Donor Electron Wave Functions for Phosphorus in Silicon: Beyond Effective Mass Theory

    Full text link
    We calculate the electronic wave-function for a phosphorus donor in silicon by numerical diagonalisation of the donor Hamiltonian in the basis of the pure crystal Bloch functions. The Hamiltonian is calculated at discrete points localised around the conduction band minima in the reciprocal lattice space. Such a technique goes beyond the approximations inherent in the effective-mass theory, and can be modified to include the effects of altered donor impurity potentials, externally applied electro-static potentials, as well as the effects of lattice strain. Modification of the donor impurity potential allows the experimentally known low-lying energy spectrum to be reproduced with good agreement, as well as the calculation of the donor wavefunction, which can then be used to calculate parameters important to quantum computing applications.Comment: 10 pages, 5 figure

    Voltage Control of Exchange Coupling in Phosphorus Doped Silicon

    Full text link
    Motivated by applications to quantum computer architectures we study the change in the exchange interaction between neighbouring phosphorus donor electrons in silicon due to the application of voltage biases to surface control electrodes. These voltage biases create electro-static fields within the crystal substrate, perturbing the states of the donor electrons and thus altering the strength of the exchange interaction between them. We find that control gates of this kind can be used to either enhance, or reduce the strength of the interaction, by an amount that depends both on the magnitude and orientation of the donor separation.Comment: 5 Pages, 5 Figure

    Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights

    Full text link
    There is an ongoing debate on the therapeutic potential of vaso-modulatory interventions against glioma invasion. Prominent vasculature-targeting therapies involve functional tumour-associated blood vessel deterioration and normalisation. The former aims at tumour infarction and nutrient deprivation medi- ated by vascular targeting agents that induce occlusion/collapse of tumour blood vessels. In contrast, the therapeutic intention of normalising the abnormal structure and function of tumour vascular net- works, e.g. via alleviating stress-induced vaso-occlusion, is to improve chemo-, immuno- and radiation therapy efficacy. Although both strategies have shown therapeutic potential, it remains unclear why they often fail to control glioma invasion into the surrounding healthy brain tissue. To shed light on this issue, we propose a mathematical model of glioma invasion focusing on the interplay between the mi- gration/proliferation dichotomy (Go-or-Grow) of glioma cells and modulations of the functional tumour vasculature. Vaso-modulatory interventions are modelled by varying the degree of vaso-occlusion. We discovered the existence of a critical cell proliferation/diffusion ratio that separates glioma invasion re- sponses to vaso-modulatory interventions into two distinct regimes. While for tumours, belonging to one regime, vascular modulations reduce the tumour front speed and increase the infiltration width, for those in the other regime the invasion speed increases and infiltration width decreases. We show how these in silico findings can be used to guide individualised approaches of vaso-modulatory treatment strategies and thereby improve success rates

    A theoretical investigation into the microwave spectroscopy of a phosphorus-donor charge-qubit in silicon: Coherent control in the Si:P quantum computer architecture

    Full text link
    We present a theoretical analysis of a microwave spectroscopy experiment on a charge qubit defined by a P2+_2^+ donor pair in silicon, for which we calculate Hamiltonian parameters using the effective-mass theory of shallow donors. We solve the master equation of the driven system in a dissipative environment to predict experimental outcomes. We describe how to calculate physical parameters of the system from such experimental results, including the dephasing time, T2T_2, and the ratio of the resonant Rabi frequency to the relaxation rate. Finally we calculate probability distributions for experimentally relevant system parameters for a particular fabrication regime

    Linking entanglement and quantum phase transitions via density functional theory

    Full text link
    Density functional theory (DFT) is shown to provide a novel conceptual and computational framework for entanglement in interacting many-body quantum systems. DFT can, in particular, shed light on the intriguing relationship between quantum phase transitions and entanglement. We use DFT concepts to express entanglement measures in terms of the first or second derivative of the ground state energy. We illustrate the versatility of the DFT approach via a variety of analytically solvable models. As a further application we discuss entanglement and quantum phase transitions in the case of mean field approximations for realistic models of many-body systems.Comment: 6 pages, 2 figure

    Band structure analysis of the conduction-band mass anisotropy in 6H and 4H SiC

    Full text link
    The band structures of 6H and 4H SiC calculated by means of the FP-LMTO method are used to determine the effective mass tensors for their conduction-band minima. The results are shown to be consistent with recent optically detected cyclotron resonance measurements and predict an unusual band filling dependence for 6H-SiC.Comment: 5 pages including 4 postscript figures incorporated with epsfig figs. available as part 2: sicfig.uu self-extracting file to appear in Phys. Rev. B: Aug. 15 (Rapid Communications

    Theory of valley-orbit coupling in a Si/SiGe quantum dot

    Full text link
    Electron states are studied for quantum dots in a strained Si quantum well, taking into account both valley and orbital physics. Realistic geometries are considered, including circular and elliptical dot shapes, parallel and perpendicular magnetic fields, and (most importantly for valley coupling) the small local tilt of the quantum well interface away from the crystallographic axes. In absence of a tilt, valley splitting occurs only between pairs of states with the same orbital quantum numbers. However, tilting is ubiquitous in conventional silicon heterostructures, leading to valley-orbit coupling. In this context, "valley splitting" is no longer a well defined concept, and the quantity of merit for qubit applications becomes the ground state gap. For typical dots used as qubits, a rich energy spectrum emerges, as a function of magnetic field, tilt angle, and orbital quantum number. Numerical and analytical solutions are obtained for the ground state gap and for the mixing fraction between the ground and excited states. This mixing can lead to valley scattering, decoherence, and leakage for Si spin qubits.Comment: 18 pages, including 4 figure
    • …
    corecore