12,443 research outputs found
Edge Electron Gas
The uniform electron gas, the traditional starting point for density-based
many-body theories of inhomogeneous systems, is inappropriate near electronic
edges. In its place we put forward the appropriate concept of the edge electron
gas.Comment: 4 pages RevTex with 7 ps-figures included. Minor changes in
title,text and figure
Decoding the activity of neuronal populations in macaque primary visual cortex
Visual function depends on the accuracy of signals carried by visual cortical neurons. Combining information across neurons should improve this accuracy because single neuron activity is variable. We examined the reliability of information inferred from populations of simultaneously recorded neurons in macaque primary visual cortex. We considered a decoding framework that computes the likelihood of visual stimuli from a pattern of population activity by linearly combining neuronal responses and tested this framework for orientation estimation and discrimination. We derived a simple parametric decoder assuming neuronal independence and a more sophisticated empirical decoder that learned the structure of the measured neuronal response distributions, including their correlated variability. The empirical decoder used the structure of these response distributions to perform better than its parametric variant, indicating that their structure contains critical information for sensory decoding. These results show how neuronal responses can best be used to inform perceptual decision-making
Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights
There is an ongoing debate on the therapeutic potential of vaso-modulatory
interventions against glioma invasion. Prominent vasculature-targeting
therapies involve functional tumour-associated blood vessel deterioration and
normalisation. The former aims at tumour infarction and nutrient deprivation
medi- ated by vascular targeting agents that induce occlusion/collapse of
tumour blood vessels. In contrast, the therapeutic intention of normalising the
abnormal structure and function of tumour vascular net- works, e.g. via
alleviating stress-induced vaso-occlusion, is to improve chemo-, immuno- and
radiation therapy efficacy. Although both strategies have shown therapeutic
potential, it remains unclear why they often fail to control glioma invasion
into the surrounding healthy brain tissue. To shed light on this issue, we
propose a mathematical model of glioma invasion focusing on the interplay
between the mi- gration/proliferation dichotomy (Go-or-Grow) of glioma cells
and modulations of the functional tumour vasculature. Vaso-modulatory
interventions are modelled by varying the degree of vaso-occlusion. We
discovered the existence of a critical cell proliferation/diffusion ratio that
separates glioma invasion re- sponses to vaso-modulatory interventions into two
distinct regimes. While for tumours, belonging to one regime, vascular
modulations reduce the tumour front speed and increase the infiltration width,
for those in the other regime the invasion speed increases and infiltration
width decreases. We show how these in silico findings can be used to guide
individualised approaches of vaso-modulatory treatment strategies and thereby
improve success rates
Quantum-Dot Cellular Automata using Buried Dopants
The use of buried dopants to construct quantum-dot cellular automata is
investigated as an alternative to conventional electronic devices for
information transport and elementary computation. This provides a limit in
terms of miniaturisation for this type of system as each potential well is
formed by a single dopant atom. As an example, phosphorous donors in silicon
are found to have good energy level separation with incoherent switching times
of the order of microseconds. However, we also illustrate the possibility of
ultra-fast quantum coherent switching via adiabatic evolution. The switching
speeds are numerically calculated and found to be 10's of picoseconds or less
for a single cell. The effect of decoherence is also simulated in the form of a
dephasing process and limits are estimated for operation with finite dephasing.
The advantages and limitations of this scheme over the more conventional
quantum-dot based scheme are discussed. The use of a buried donor cellular
automata system is also discussed as an architecture for testing several
aspects of buried donor based quantum computing schemes.Comment: Minor changes in response to referees comments. Improved section on
scaling and added plot of incoherent switching time
The Decay Properties of the Finite Temperature Density Matrix in Metals
Using ordinary Fourier analysis, the asymptotic decay behavior of the density
matrix F(r,r') is derived for the case of a metal at a finite electronic
temperature. An oscillatory behavior which is damped exponentially with
increasing distance between r and r' is found. The decay rate is not only
determined by the electronic temperature, but also by the Fermi energy. The
theoretical predictions are confirmed by numerical simulations
Electromagnetic analysis of arbitrarily shaped pinched carpets
We derive the expressions for the anisotropic heterogeneous tensors of
permittivity and perme- ability associated with two-dimensional and
three-dimensional carpets of an arbitrary shape. In the former case, we map a
segment onto smooth curves whereas in the latter case we map a non convex
region of the plane onto smooth surfaces. Importantly, these carpets display no
singularity of the permeability and permeability tensor components, and this
may lead to some broadband cloaking.Comment: 6 pages, 6 figures, Current Status of Manuscript: 19Apr10
26May10-Sent on appeal;report rcvd 29Dec09 13Apr10-Ed. decision and/or ref.
comments to author;response rcvd 04Dec09 21Dec09-Ed. decision and/or ref.
comments to author;response rcvd 01Dec09-Transferred from PRL to PRA 18Aug09
30Nov09-Ed.decision and/or ref. comments to author;response rcvd 14Aug09 -
Correspondence sent to autho
Is there Ornstein-Zernike equation in the canonical ensemble?
A general density-functional formalism using an extended variable-space is
presented for classical fluids in the canonical ensemble (CE). An exact
equation is derived that plays the role of the Ornstein-Zernike (OZ) equation
in the grand canonical ensemble (GCE). When applied to the ideal gas we obtain
the exact result for the total correlation function h_N. For a homogeneous
fluid with N particles the new equation only differs from OZ by 1/N and it
allows to obtain an approximate expression for h_N in terms of its GCE
counterpart that agrees with the expansion of h_N in powers of 1/N.Comment: 5 pages, RevTeX. Submitted to Phys. Rev. Let
Titanium in Muscovite, Biotite, and Hornblende: Modeling, Thermometry, and Rutile Activities of Metapelites and Amphibolites
Reactions involving the VITiIVAl-VIAlIVSi exchange in muscovite, biotite, and hornblende were calibrated thermodynamically using a set of experimental and natural data in rutile-plus quartz/coesite-bearing assemblages. The specific respective reactions are
K(Al2)(AlSi3)O10(OH)2 + TiO2 = K(AlTi)(Al2Si2)O10(OH)2 + SiO2 (R1)
K(â–¡MgAl)Si4O10(OH)2 + TiO2 = K(â–¡MgTi)AlSi3O10(OH)2 + SiO2 (R2)
Ca2Mg3Al2Al2Si6O22(OH)2 + 2TiO2 = Ca2Mg3Ti2Al4Si4O22(OH)2 + 2SiO2. (R3)
Ideal mixing on octahedral or octahedral plus tetrahedral sites and a non-ideal van Laar solution model yield the best regression results for thermodynamic fit parameters, with R2 values of 0.98–1.00. Isopleths of the equilibrium constant (Keq) show minimal pressure dependencies of \u3c1 \u3e°C/kbar, implying that the equilibria are poor barometers. Model reproducibility of the ideal portion of the equilibrium constant (Kid) is excellent (ca. ±0.1 to 0.3, 2σ), but the absolute value of the combined term ΔS+Kid is quite small (absolute values from 0 to 4), so calibration residuals propagate to temperature errors \u3e±50–100 °C, 1σ. Whereas the consistency of a mica or hornblende composition with a known T can be evaluated precisely, Ti chemistry in these reactions is sensitive to composition and does not resolve T (or P) well. The activity of TiO2 in rutile [a(rt)] was also evaluated using both the garnet-rutile-ilmenite-plagioclase-quartz (GRIPS) equilibrium and our new calibrations in rutile-absent, ilmenite-bearing rocks whose peak P-T conditions are otherwise known. Metapelites have average a(rt) of 0.9 (GRIPS) and 0.8 (R1), whereas amphibolites have a(rt) of 0.95 (GRIPS and R3). A value for a(rt) of 0.80 ± 0.20 (metapelites) and 0.95 +0.05/−0.25 (amphibolites) is recommended for trace-element thermomobarometers in ilmenite-bearing, rutile-absent rocks. The dependence of Ti contents of minerals on a(rt) and the reequilibration of Ti during metamorphic reactions both deserve further exploration, and may affect application of trace-element thermobarometers
Molecular effects in the ionization of N, O and F by intense laser fields
In this paper we study the response in time of N, O and F to
laser pulses having a wavelength of 390nm. We find single ionization
suppression in O and its absence in F, in accordance with experimental
results at nm. Within our framework of time-dependent density
functional theory we are able to explain deviations from the predictions of
Intense-Field Many-Body -Matrix Theory (IMST). We confirm the connection of
ionization suppression with destructive interference of outgoing electron waves
from the ionized electron orbital. However, the prediction of ionization
suppression, justified within the IMST approach through the symmetry of the
highest occupied molecular orbital (HOMO), is not reliable since it turns out
that, e.g. in the case of F, the electronic response to the laser pulse is
rather complicated and does not lead to dominant depletion of the HOMO.
Therefore, the symmetry of the HOMO is not sufficient to predict ionization
suppression. However, at least for F, the symmetry of the dominantly
ionized orbital is consistent with the non-suppression of ionization.Comment: 19 pages, 5 figure
Deformation of the Fermi surface in the extended Hubbard model
The deformation of the Fermi surface induced by Coulomb interactions is
investigated in the t-t'-Hubbard model. The interplay of the local U and
extended V interactions is analyzed. It is found that exchange interactions V
enhance small anisotropies producing deformations of the Fermi surface which
break the point group symmetry of the square lattice at the Van Hove filling.
This Pomeranchuck instability competes with ferromagnetism and is suppressed at
a critical value of U(V). The interaction V renormalizes the t' parameter to
smaller values what favours nesting. It also induces changes on the topology of
the Fermi surface which can go from hole to electron-like what may explain
recent ARPES experiments.Comment: 5 pages, 4 ps figure
- …