465 research outputs found
Investigation of high frequency performance limit of graphene field effect transistors
Cataloged from PDF version of article.Extremely high field effect mobility together with the high surface coverage makes graphene a promising material for high frequency electronics application. We investigate the intrinsic high frequency performance limit of graphene field effect transistors limited by the charge impurity scattering. The output and transfer characteristics of graphene field effect transistors together with the high frequency performance are characterized as a function of impurity concentration and dielectric constant of the gate insulator. Our results reveal that graphene transistors could provide power gain at radio frequency band. (C) 2010 American Institute of Physics. [doi:10.1063/1.3506506
Binary Sequences With Low Aperiodic Autocorrelation for Synchronization Purposes
Cataloged from PDF version of article.An evolutionary algorithm is used to find three sets
of binary sequences of length 49–100 suitable for the synchronization
of digital communication systems. Optimization of the sets are
done by taking into consideration the type of preamble used in
data frames and the phase-lock mechanism of the communication
system. The preamble is assumed to be either a pseudonoise (PN)
sequence or a sequence of 1’s. There may or may not be phase ambiguity
in detection. With this categorization, the first set of binary
sequences is optimized with respect to aperiodic autocorrelation
which corresponds to the random (PN) preamble without phase
ambiguity case. The second and third sets are optimized with respect
to a modified aperiodic autocorrelation for different figures
of merit corresponding to the predetermined preamble (sequence
of 1’s) with and without phase ambiguity cases
Solid Modeling and Finite Element Analysis of an Overhead Crane Bridge
The design of an overhead crane bridge with a double box girder has been investigated and a case study of a crane with 35 ton capacity and 13 m span length has been conducted. In the initial phase of the case study, conventional design calculations proposed by F. E. M. Rules and DIN standards were performed to verify the stress and deflection levels. The crane design was modeled using both solids and surfaces. Finite element meshes with 4-node tetrahedral and 4-node quadrilateral shell elements were generated from the solid and shell models, respectively. After a comparison of the finite element analyses, the conventional calculations and performance of the existing crane, the analysis with quadratic shell elements was found to give the most realistic results. As a result of this study, a design optimization method for an overhead crane is proposed.
Absorption enhancement of molecules in the weak plasmon-exciton coupling regime
Cataloged from PDF version of article.We report on the experimental and theoretical investigations of enhancing the optical absorption of organic molecules
in the weak plasmon–exciton coupling regime. A metal–organic hybrid structure consisting of dye molecules
embedded in the polymer matrix is placed in close vicinity to thin metal films. We have observed a transition from a
weak coupling regime to a strong coupling one as the thickness of the metal layer increases. The results indicate that
absorption of the self-assembled J-aggregate nanostructures can be increased in the weak plasmon–exciton coupling
regime and strongly quenched in the strong coupling regime. A theoretical model based on the transfer-matrix
method qualitatively confirms the experimental results obtained from polarization-dependent spectroscopic
reflection measurements
Plexcitonic crystals: a tunable platform for light-matter interactions
Cataloged from PDF version of article.Coupled states of surface plasmon polaritons (SPPs) and excitons are collectively called plexcitons [Nano Lett. 8, 3481 (2008)]. Plexcitonics is an emerging field of research aiming to control light-matter interaction at the nanometer length scale using coupled pairs of surface-plasmons and excitons. Ability to control the interaction between localized excitons and propagating surface-plasmons is important for realization of new photonic devices. In this letter, we report plexcitonic crystals that yield direction-dependent plasmon-exciton coupling. We have fabricated one- and two-dimensional plexcitonic crystals on periodically corrugated silver surfaces, which are loaded with J-aggregate complexes. We show that plasmon-exciton coupling is blocked for some crystal directions when exciton energy falls inside the plasmonic band gap of the periodically corrugated metallic surface. (C) 2014 Optical Society of Americ
Direct imaging of localized surface plasmon polaritons
Cataloged from PDF version of article.In this Letter, we report on dark field imaging of localized surface plasmon polaritons (SPPs) in plasmonic waveguiding bands formed by plasmonic coupled cavities. We image the light scattered from SPPs in the plasmonic cavities excited by a tunable light source. Tuning the excitation wavelength, we measure the localization and dispersion of the plasmonic cavity mode. Dark field imaging has been achieved in the Kretschmann configuration using a supercontinuum white-light laser equipped with an acoustooptic tunable filter. Polarization dependent spectroscopic reflection and dark field imaging measurements are correlated and found to be in agreement with finite-difference time-domain calculations. (C) 2011 Optical Society of Americ
Topological transitions in carbon nanotube networks via nanoscale confinement
Efforts aimed at large-scale integration of nanoelectronic devices that
exploit the superior electronic and mechanical properties of single-walled
carbon nanotubes (SWCNTs) remain limited by the difficulties associated with
manipulation and packaging of individual SWNTs. Alternative approaches based on
ultra-thin carbon nanotube networks (CNNs) have enjoyed success of late with
the realization of several scalable device applications. However, precise
control over the network electronic transport is challenging due to i) an often
uncontrollable interplay between network coverage and its topology and ii) the
inherent electrical heterogeneity of the constituent SWNTs. In this letter, we
use template-assisted fluidic assembly of SWCNT networks to explore the effect
of geometric confinement on the network topology. Heterogeneous SWCNT networks
dip-coated onto sub-micron wide ultra-thin polymer channels exhibit a topology
that becomes increasingly aligned with decreasing channel width and thickness.
Experimental scale coarse-grained computations of interacting SWCNTs show that
the effect is a reflection of an aligned topology that is no longer dependent
on the network density, which in turn emerges as a robust knob that can induce
semiconductor-to-metallic transitions in the network response. Our study
demonstrates the effectiveness of directed assembly on channels with varying
degrees of confinement as a simple tool to tailor the conductance of the
otherwise heterogeneous network, opening up the possibility of robust
large-scale CNN-based devices.Comment: 4 pages, 3 figure
Strong coupling between localized and propagating plasmon polaritons
We investigate plasmon-plasmon (PP) coupling in the strongly interacting regimes by using a tunable plasmonic platform consisting of triangular Ag nanoprisms placed nanometers away from Ag thin films. The nanoprisms are colloidally synthesized using a seed-mediated growth method and having size-tunable localized surface plasmon polariton (SPP) resonances immobilized on Si3N4 films. The PP coupling between the localized SPPs of metal nanoprisms and the propagating SPPs of the metal film is controlled by the nanoprism concentration and the plasmon damping in the metal film. Results reveal that Rabi splitting energy determining the strength of the coupling can reach up to several hundreds meV, thus demonstrating the ultrastrong coupling occurring between localized and propagating SPPs. The metal nanoparticle-metal thin film hybrid system over the square-centimeter areas presented here provides a unique configuration to study PP coupling all the way from the weak to ultrastrong coupling regimes in a broad range of wavelengths. © 2015 Optical Society of America
Probing ultrafast energy transfer between excitons and plasmons in the ultrastrong coupling regime
Cataloged from PDF version of article.We investigate ultrafast energy transfer between excitons and plasmons in ensembles of core-shell type nanoparticles consisting of metal core covered with a concentric thin J-aggregate (JA) shell. The high electric field localization by the Ag nanoprisms and the high oscillator strength of the JAs allow us to probe this interaction in the ultrastrong plasmon-exciton coupling regime. Linear and nonlinear optical properties of the coupled system have been measured using transient absorption spectroscopy revealing that the hybrid system shows half-plasmonic and half-excitonic properties. The tunability of the nanoprism plasmon resonance provides a flexible platform to study the dynamics of the hybrid state in a broad range of wavelengths. (C) 2014 AIP Publishing LLC
Slow plasmons in grating cavities
Recent research on surface plasmon polaritons and their applications have brought forward a wealth of information and continues to be of interest to many. In this report, we concentrate on propagating surface plasmon polaritons (SPPs) and their interaction with matter. Using grating based metallic structures, it is possible to control the electrodynamics of propagating SPPs. Biharmonic gratings loaded with periodic Si stripes allow excitation of SPPs that are localized inside the band gap with grating coupling, [1]. The cavity state is formed due to periodic effective index modulation obtained by one harmonic of the grating and loaded Si stripes. More complicated grating structures such as metallic Moiré surfaces have also been shown to form a localized state inside the band gap when excited with Kretschmann configuration, [1-6]. © 2016 SPIE
- …