2,652 research outputs found

    The Benefits of B ---> K* l+ l- Decays at Low Recoil

    Get PDF
    Using the heavy quark effective theory framework put forward by Grinstein and Pirjol we work out predictions for B -> K* l+ l-, l = (e, mu), decays for a softly recoiling K*, i.e., for large dilepton masses sqrt{q^2} of the order of the b-quark mass m_b. We work to lowest order in Lambda/Q, where Q = (m_b, sqrt{q^2}) and include the next-to-leading order corrections from the charm quark mass m_c and the strong coupling at O(m_c^2/Q^2, alpha_s). The leading Lambda/m_b corrections are parametrically suppressed. The improved Isgur-Wise form factor relations correlate the B -> K* l+ l- transversity amplitudes, which simplifies the description of the various decay observables and provides opportunities for the extraction of the electroweak short distance couplings. We propose new angular observables which have very small hadronic uncertainties. We exploit existing data on B -> K* l+ l- distributions and show that the low recoil region provides powerful additional information to the large recoil one. We find disjoint best-fit solutions, which include the Standard Model, but also beyond-the-Standard Model ones. This ambiguity can be accessed with future precision measurements.Comment: 31 pages, 8 figures; Instability near minimal recoil from numerics removed, Fig. 1 replaced and minor shifts in short distance uncertainties in SM predictions; typos corrected and references added; main results and conclusions unchange

    Rotating black holes with equal-magnitude angular momenta in d=5 Einstein-Gauss-Bonnet theory

    Full text link
    We construct rotating black hole solutions in Einstein-Gauss-Bonnet theory in five spacetime dimensions. These black holes are asymptotically flat, and possess a regular horizon of spherical topology and two equal-magnitude angular momenta associated with two distinct planes of rotation. The action and global charges of the solutions are obtained by using the quasilocal formalism with boundary counterterms generalized for the case of Einstein-Gauss-Bonnet theory. We discuss the general properties of these black holes and study their dependence on the Gauss-Bonnet coupling constant α\alpha. We argue that most of the properties of the configurations are not affected by the higher derivative terms. For fixed α\alpha the set of black hole solutions terminates at an extremal black hole with a regular horizon, where the Hawking temperature vanishes and the angular momenta attain their extremal values. The domain of existence of regular black hole solutions is studied. The near horizon geometry of the extremal solutions is determined by employing the entropy function formalism.Comment: 25 pages, 7 figure

    Tissue-Restricted Expression of Nrf2 and Its Target Genes in Zebrafish with Gene-Specific Variations in the Induction Profiles

    Get PDF
    The Keap1-Nrf2 system serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than one hundred cytoprotective proteins, including antioxidants and phase 2 detoxifying enzymes. Since induction profiles of Nrf2 target genes have been studied exclusively in cultured cells, and not in animal models, their tissue-specificity has not been well characterized. In this paper, we examined and compared the tissue-specific expression of several Nrf2 target genes in zebrafish larvae by whole-mount in situ hybridization (WISH). Seven zebrafish genes (gstp1, mgst3b, prdx1, frrs1c, fthl, gclc and hmox1a) suitable for WISH analysis were selected from candidates for Nrf2 targets identified by microarray analysis. Tissue-restricted induction was observed in the nose, gill, and/or liver for all seven genes in response to Nrf2-activating compounds, diethylmaleate (DEM) and sulforaphane. The Nrf2 gene itself was dominantly expressed in these three tissues, implying that tissue-restricted induction of Nrf2 target genes is defined by tissue-specific expression of Nrf2. Interestingly, the induction of frrs1c and gclc in liver and nose, respectively, was quite low and that of hmox1a was restricted in the liver. These results indicate the existence of gene-specific variations in the tissue specificity, which can be controlled by factors other than Nrf2

    Generalized Weyl solutions in d=5 Einstein-Gauss-Bonnet theory: the static black ring

    Full text link
    We argue that the Weyl coordinates and the rod-structure employed to construct static axisymmetric solutions in higher dimensional Einstein gravity can be generalized to the Einstein-Gauss-Bonnet theory. As a concrete application of the general formalism, we present numerical evidence for the existence of static black ring solutions in Einstein-Gauss-Bonnet theory in five spacetime dimensions. They approach asymptotically the Minkowski background and are supported against collapse by a conical singularity in the form of a disk. An interesting feature of these solutions is that the Gauss-Bonnet term reduces the conical excess of the static black rings. Analogous to the Einstein-Gauss-Bonnet black strings, for a given mass the static black rings exist up to a maximal value of the Gauss-Bonnet coupling constant α\alpha'. Moreover, in the limit of large ring radius, the suitably rescaled black ring maximal value of α\alpha' and the black string maximal value of α\alpha' agree.Comment: 43 pages, 14 figure

    Einstein-Gauss-Bonnet black strings

    Full text link
    We construct uniform black-string solutions in Einstein-Gauss-Bonnet gravity for all dimensions dd between five and ten and discuss their basic properties. Closed form solutions are found by taking the Gauss-Bonnet term as a perturbation from pure Einstein gravity. Nonperturbative solutions are constructed by solving numerically the equations of the model. The Gregory-Laflamme instability of the black strings is explored via linearized perturbation theory. Our results indicate that new qualitative features occur for d=6d=6, in which case stable configurations exist for large enough values of the Gauss-Bonnet coupling constant. For other dimensions, the black strings are dynamically unstable and have also a negative specific heat. We argue that this provides an explicit realization of the Gubser-Mitra conjecture, which links local dynamical and thermodynamic stability. Nonuniform black strings in Einstein-Gauss-Bonnet theory are also constructed in six spacetime dimensions.Comment: 33 pages, 11 figure

    Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control

    Get PDF
    Trf4 is the poly(A) polymerase component of TRAMP4, which stimulates nuclear RNA degradation by the exosome. We report that in Saccharomyces cerevisiae strains lacking Trf4, cryptic transcripts are detected from regions of repressed chromatin at telomeres and the rDNA intergenic spacer region (IGS1-R), and at CEN3. Degradation of the IGS1-R transcript was reduced in strains lacking TRAMP components, the core exosome protein Mtr3 or the nuclear-specific exosome component Rrp6. IGS1-R has potential binding sites for the RNA-binding proteins Nrd1/Nab3, and was stabilized by mutation of Nrd1. IGS1-R passes through the replication fork barrier, a region required for rDNA copy number control. Strains lacking Trf4 showed sporadic changes in rDNA copy number, whereas loss of both Trf4 and either the histone deacetylase Sir2 or the topoisomerase Top1 caused dramatic loss of rDNA repeats. Chromatin immunoprecipitation analyses showed that Trf4 is co-transcriptionally recruited to IGS1-R, consistent with a direct role in rDNA stability. Co-transcriptional RNA binding by Trf4 may link RNA and DNA metabolism and direct immediate IGS1-R degradation by the exosome following transcription termination

    Batch effect correction for genome-wide methylation data with Illumina Infinium platform

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide methylation profiling has led to more comprehensive insights into gene regulation mechanisms and potential therapeutic targets. Illumina Human Methylation BeadChip is one of the most commonly used genome-wide methylation platforms. Similar to other microarray experiments, methylation data is susceptible to various technical artifacts, particularly batch effects. To date, little attention has been given to issues related to normalization and batch effect correction for this kind of data.</p> <p>Methods</p> <p>We evaluated three common normalization approaches and investigated their performance in batch effect removal using three datasets with different degrees of batch effects generated from HumanMethylation27 platform: quantile normalization at average β value (QNβ); two step quantile normalization at probe signals implemented in "lumi" package of R (lumi); and quantile normalization of A and B signal separately (ABnorm). Subsequent Empirical Bayes (EB) batch adjustment was also evaluated.</p> <p>Results</p> <p>Each normalization could remove a portion of batch effects and their effectiveness differed depending on the severity of batch effects in a dataset. For the dataset with minor batch effects (Dataset 1), normalization alone appeared adequate and "lumi" showed the best performance. However, all methods left substantial batch effects intact in the datasets with obvious batch effects and further correction was necessary. Without any correction, 50 and 66 percent of CpGs were associated with batch effects in Dataset 2 and 3, respectively. After QNβ, lumi or ABnorm, the number of CpGs associated with batch effects were reduced to 24, 32, and 26 percent for Dataset 2; and 37, 46, and 35 percent for Dataset 3, respectively. Additional EB correction effectively removed such remaining non-biological effects. More importantly, the two-step procedure almost tripled the numbers of CpGs associated with the outcome of interest for the two datasets.</p> <p>Conclusion</p> <p>Genome-wide methylation data from Infinium Methylation BeadChip can be susceptible to batch effects with profound impacts on downstream analyses and conclusions. Normalization can reduce part but not all batch effects. EB correction along with normalization is recommended for effective batch effect removal.</p

    Peri-ampullary mixed acinar-endocrine carcinoma

    Get PDF
    Mixed acinar-endocrine carcinomas (MAEC) are rare tumors of the pancreas. We present the case of a patient with periampullary tumor that presented with painless jaundice and after investigation was found to have MAEC. He underwent pancreaticoduo-dunectomy with tumor free margins and negative lymph nodes. The patient presented with local recurrence and liver metastasis after 1 year and is on chemotherapy with stable lesions 30 months after the diagnosis
    corecore