5 research outputs found
Recommended from our members
Effect of zeolitic nano-catalyst on biodiesel yield and biochar formation during the pyrolysis of tallow
This study investigates the effect of zeolite nano-catalyst on the yield of biodiesel and biochar formed from the pyrolysis of tallow (cow fat). Residual waste cow fat was pyrolyzed in a fixed-bed reactor of laboratory-scale volume 2200 cm3, at operating temperatures of 450, 500, 530, and 580 °C and heating rates of 4, 5, and 6 °C/min. The molecular composition of cow fat was analyzed using a gas chromatography molecular spectrograph (GC-MS). It was observed that the biodiesel produced without a catalyst was mainly composed of aromatic carboxylic acids, esters, alkanes, alkenes, and alkanes, while the biodiesel produced with zeolite nano-catalyst consisted mainly of methyl esters, pentanoic acid, heptanoic acid, cyclo-olefins, 4,4-dimethylcyclohexene, butyl-cyclohexane, butyl-cyclopentane, and 1-pentylcyclopentene. A biodiesel yield of 58% was achieved when a 1% zeolite nano-catalyst was used to pyrolyze the tallow at an operating temperature of 530 °C and heating rate of 6 °C/min. When the tallow was pyrolyzed without a zeolitic catalyst, decarboxylation was promoted, and a higher biodiesel yield of 82.78 wt% was achieved. Results from this study revealed that although zeolite nano-catalyst did not show an incremental effect on the yield of biodiesel, it favors biogas production and biochar formation
Recommended from our members
Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept
In recent years, much attention has been directed towards the integration of dark fermentation process into a biorefinery concept to enhance the energetic gains, thereby improving the competitiveness of this process. The volatile fatty acids (VFAs) from dark fermentative H2-producing processes serve as precursors for the microbial synthesis of a broad spectrum of biotechnologically-important products such as biofuels and biocommodities. These products are desirable substrates for secondary bioprocesses due to their biodegradable nature and affordability. This short review discusses the use of acidogenic-derived VFAs in the production of value-added compounds such as polyhydroxyalkanoates (PHAs) alongside the microbial-based fuels (hydrogen, biogas, and electricity), and other valuable compounds (succinic acid, citric acid, and butanol). The review also highlights the strategies that have been used to enhance the extraction of VFAs from acidogenic effluents and other related waste streams. The application of novel enhancement techniques such as nanoparticles during VFAs recovery is also discussed in this work. Furthermore, the work highlights some of the recent advances in dark fermentation-based biorefinery, particularly the development of pilot-scale processes. Finally, the review provides some suggestions on the advancement of dark fermentation-based biorefineries using VFAs that are derived from acidogenic processes