2,483 research outputs found
Probing the interiors of the ice giants: Shock compression of water to 700 GPa and 3.8 g/ccm
Recently there has been tremendous increase in the number of identified
extra-solar planetary systems. Our understanding of their formation is tied to
exoplanet internal structure models, which rely upon equations of state of
light elements and compounds like water. Here we present shock compression data
for water with unprecedented accuracy that shows water equations of state
commonly used in planetary modeling significantly overestimate the
compressibility at conditions relevant to planetary interiors. Furthermore, we
show its behavior at these conditions, including reflectivity and isentropic
response, is well described by a recent first-principles based equation of
state. These findings advocate this water model be used as the standard for
modeling Neptune, Uranus, and "hot Neptune" exoplanets, and should improve our
understanding of these types of planets.Comment: Accepted to Phys. Rev. Lett.; supplementary material attached
including 2 figures and 2 tables; to view attachments, please download and
extract the gzipped tar source file listed under "Other formats
QUALITATIVE BIOMECHANICS FOR COACHING
Session Information: Coaches must apply principles of biomechanics in their qualitative judgments of the technique used by athletes. These judgments can have a major influence on performance and injury risk. This session will focus on the most effective use of qualitative biomechanical analyses and video replay software. Several scholars who have experience teaching qualitative biomechanical analysis to future coaches will present, followed by a question and answer session. Schedule of Presentations: Dr. Knudson will introduce the session and provide a brief overview of qualitative biomechanical analysis. 11:00 – 11:15 Dr. Alderson will present sport injury models as they apply to assessment, intervention and rehabilitation of common injuries in cricket, tennis and running. Relevant qualitative and quantitative 2D features of SiliconCoach that can be utilised by a coach to potentially reduce injury incidence will be presented. 11:15 – 11:45 Dr. Bahamonde will present how qualitative analysis can be used to teach biomechanics concepts to physical education and coaching students. Movement examples from tennis, soccer and track field and meaningful features of Hu-m-an software will be illustrated. Hu-m-an is unique in that it was developed with a specific teaching-learning focus. 11:45 – 12:15 Dr. Bird will present biomechanical core concepts as a “common language” to evaluate and improve all human movements. The core concepts are visually observable, but meaningful features of Dartfish will be illustrated to enhance what is seen by both the coach and the mover. Movement examples from golf, resistance training, basketball, and other sports will be presented. 12:15 – 12:45 Discussion: 12:45 – 13:00 This will provide an opportunity for delegates to ask specific questions relating to any of the presenters
Recommended from our members
Mass casualty events: what to do as the dust settles?
Care during mass casualty events (MCE) has improved during the last 15 years. Military and civilian collaboration has led to partnerships which augment the response to MCE. Much has been written about strategies to deliver care during an MCE, but there is little about how to transition back to normal operations after an event. A panel discussion entitled The Day(s) After: Lessons Learned from Trauma Team Management in the Aftermath of an Unexpected Mass Casualty Event at the 76th Annual American Association for the Surgery of Trauma meeting on September 13, 2017 brought together a cadre of military and civilian surgeons with experience in MCEs. The events described were the First Battle of Mogadishu (1993), the Second Battle of Fallujah (2004), the Bagram Detention Center Rocket Attack (2014), the Boston Marathon Bombing (2013), the Asiana Flight 214 Plane Crash (2013), the Baltimore Riots (2015), and the Orlando Pulse Night Club Shooting (2016). This article focuses on the lessons learned from military and civilian surgeons in the days after MCEs
Performance of Large-Volume Mean-Timed Neutron Detectors
Supported by the National Science Foundation and Indiana Universit
Recommended from our members
Response to mass casualty events: from the battlefield to the Stop the Bleed campaign
In the aftermath of a number of episodes of mass casualty events, we must be reminded of how important it is to be prepared and to reflect on the knowledge accumulated over the past 15 years of war in Iraq and Afghanistan
Differential cross sections for pion charge exchange on the proton at 27.5 MeV
We have measured pion single charge exchange differential cross sections on
the proton at 27.5 MeV incident kinetic energy in the center of
momentum angular range between and . The extracted cross
sections are compared with predictions of the standard pion-nucleon partial
wave analysis and found to be in excellent agreement.Comment: ReVTeX v3.0 with aps.sty, 23 pages in e-print format, 7 PostScript
Figures and 4 Tables, also available via anonymous ftp at
ftp://helena.phys.virginia.edu/pub/preprints/scx.p
High-Spin States in Nuclei Excited Via the (p,n) Reactions
Supported by the National Science Foundation and Indiana Universit
Accumulation of driver and passenger mutations during tumor progression
Major efforts to sequence cancer genomes are now occurring throughout the
world. Though the emerging data from these studies are illuminating, their
reconciliation with epidemiologic and clinical observations poses a major
challenge. In the current study, we provide a novel mathematical model that
begins to address this challenge. We model tumors as a discrete time branching
process that starts with a single driver mutation and proceeds as each new
driver mutation leads to a slightly increased rate of clonal expansion. Using
the model, we observe tremendous variation in the rate of tumor development -
providing an understanding of the heterogeneity in tumor sizes and development
times that have been observed by epidemiologists and clinicians. Furthermore,
the model provides a simple formula for the number of driver mutations as a
function of the total number of mutations in the tumor. Finally, when applied
to recent experimental data, the model allows us to calculate, for the first
time, the actual selective advantage provided by typical somatic mutations in
human tumors in situ. This selective advantage is surprisingly small, 0.005 +-
0.0005, and has major implications for experimental cancer research
- …