7,354 research outputs found

    Inhomogeneous reionization and the polarization of the cosmic microwave background

    Get PDF
    In a universe with inhomogeneous reionization, the ionized patches create a second order signal in the cosmic microwave background polarization anisotropy. This signal originates in the coupling of the free electron fluctuation to the quadruple moment of the temperature anisotropy. We examine the contribution from a simple inhomogeneous reionization model and find that the signal from such a process is below the detectable limits of the Planck Surveyor mission. However t he signal is above the fundamental uncertainty limit from cosmic variance, so th at a future detection with a high accuracy experiment on sub-arcminute scales is possible.Comment: 10 pages, 2 eps figures, final version accepted for publication in ApJ Letter

    EUV and X-ray spectroheliograph study

    Get PDF
    The results of a program directed toward the definition of an EUV and X-ray spectroheliograph which has significant performance and operational improvements over the OSO-7 instrument are documented. The program investigated methods of implementing selected changes and incorporated the results of the study into a set of drawings which defines the new instrument. The EUV detector performance degradation observed during the OSO-7 mission was investigated and the most probable cause of the degradation identified

    Long range Kelvin wave propagation of transport variations in Pacific Ocean equatorial currents

    Get PDF
    Two 100 km scale arrays of moored upper ocean current meters, one near 0, 152W, the other near 0, 110W, were used to study the zonal transport of the strong equatorial currents in and above the thermocline. At long periods (several days), fluctuations· in the vertically integrated zonal velocity (transport per unit meridional distance) at a single equatorial mooring were highly correlated with fluctuations in the total transport across the section 0-250 m and 1N-1S, which includes most of the Equatorial Undercurrent...

    Variational discrete variable representation for excitons on a lattice

    Full text link
    We construct numerical basis function sets on a lattice, whose spatial extension is scalable from single lattice sites to the continuum limit. They allow us to compute small and large bound states with comparable, moderate effort. Adopting concepts of discrete variable representations, a diagonal form of the potential term is achieved through a unitary transformation to Gaussian quadrature points. Thereby the computational effort in three dimensions scales as the fourth instead of the sixth power of the number of basis functions along each axis, such that it is reduced by two orders of magnitude in realistic examples. As an improvement over standard discrete variable representations, our construction preserves the variational principle. It allows for the calculation of binding energies, wave functions, and excitation spectra. We use this technique to study central-cell corrections for excitons beyond the continuum approximation. A discussion of the mass and spectrum of the yellow exciton series in the cuprous oxide, which does not follow the hydrogenic Rydberg series of Mott-Wannier excitons, is given on the basis of a simple lattice model.Comment: 12 pages, 7 figures. Final version as publishe

    Cosmic Microwave Background Anisotropy Window Functions Revisited

    Get PDF
    The primary results of most observations of cosmic microwave background (CMB) anisotropy are estimates of the angular power spectrum averaged through some broad band, called band-powers. These estimates are in turn what are used to produce constraints on cosmological parameters due to all CMB observations. Essential to this estimation of cosmological parameters is the calculation of the expected band-power for a given experiment, given a theoretical power spectrum. Here we derive the "band power" window function which should be used for this calculation, and point out that it is not equivalent to the window function used to calculate the variance. This important distinction has been absent from much of the literature: the variance window function is often used as the band-power window function. We discuss the validity of this assumed equivalence, the role of window functions for experiments that constrain the power in {\it multiple} bands, and summarize a prescription for reporting experimental results. The analysis methods detailed here are applied in a companion paper to three years of data from the Medium Scale Anisotropy Measurement.Comment: 5 pages, 1 included .eps figure, PRD in press---final published versio

    Additions and intramolecular migrations of nucleophiles in cationic diruthenium µ-allenyl complexes

    Get PDF
    Hydride and halide anions readily replace the acetonitrile ligand in the diruthenium μ-allenyl complex 3b. The hydride can successively migrate to the Cα carbon of the allenyl moiety, and then to Cβ, affording 9 as the most stable product. The μ-vinyl-chlorocarbene adduct 10 is believed to be formed from 4b by chloride migration to Cα and hydrogen migration from Cα to Cβ

    Probing the equation of state of the early universe with a space laser interferometer

    Full text link
    We propose a method to probe the equation of state of the early universe and its evolution, using the stochastic gravitational wave background from inflation. A small deviation from purely radiation dominated universe (w=1/3w= 1/3) would be clearly imprinted on the gravitational wave spectrum ΩGW(f)\Omega_{GW}(f) due to the nearly scale invariant nature of inflationary generated waves.Comment: 10 pages, 1 figur

    Spectro-microscopy of single and multi-layer graphene supported by a weakly interacting substrate

    Full text link
    We report measurements of the electronic structure and surface morphology of exfoliated graphene on an insulating substrate using angle-resolved photoemission and low energy electron diffraction. Our results show that although exfoliated graphene is microscopically corrugated, the valence band retains a massless fermionic dispersion, with a Fermi velocity of ~10^6 m/s. We observe a close relationship between the morphology and electronic structure, which suggests that controlling the interaction between graphene and the supporting substrate is essential for graphene device applications.Comment: 10 pages of text, 4 JPEG figure
    corecore