3,287 research outputs found

    Vehicle infrastructure cooperative localization using Factor Graphs

    Get PDF
    Highly assisted and Autonomous Driving is dependent on the accurate localization of both the vehicle and other targets within the environment. With increasing traffic on roads and wider proliferation of low cost sensors, a vehicle-infrastructure cooperative localization scenario can provide improved performance over traditional mono-platform localization. The paper highlights the various challenges in the process and proposes a solution based on Factor Graphs which utilizes the concept of topology of vehicles. A Factor Graph represents probabilistic graphical model as a bipartite graph. It is used to add the inter-vehicle distance as constraints while localizing the vehicle. The proposed solution is easily scalable for many vehicles without increasing the execution complexity. Finally simulation indicates that incorporating the topology information as a state estimate can improve performance over the traditional Kalman Filter approac

    How Far Ahead Do People Plan?

    Get PDF
    We report on a simple experiment which enables us to infer how far people plan ahead when taking decisions in a dynamic risky context. Usually economic theory assumes that people plan right to the end of the planning horizon. We find that this is true for a little over half of the subjects in the experiment, while a little under one half seem not to plan ahead at all.We report on a simple experiment which enables us to infer how far people plan ahead when taking decisions in a dynamic risky context. Usually economic theory assumes that people plan right to the end of the planning horizon. We find that this is true for a little over half of the subjects in the experiment, while a little under one half seem not to plan ahead at all.Refereed Working Papers / of international relevanc

    Effects of Signal Processing and Antenna Frequency on the Geostatistical Structure of Ground-Penetrating Radar Data

    Get PDF
    Recent research has suggested that the geostatistical structure of ground-penetrating radar data may be representative of the spatial structure of hydraulic properties. However, radar images of the subsurface can change drastically with application of signal processing or by changing the signal frequency. We perform geostatistical analyses of surface radar reflection profiles in order to investigate the effects of data processing and antenna frequency on the semivariogram structure of radar reflection amplitudes. Surface radar reflection data collected at the Boise Hydrogeophysical Research Site illustrate the processing- and antenna-dependence of radar semivariograms for a fluvial, cobble-and-sand aquifer. Compensating for signal attenuation and spreading using a gain function removes a nonstationary trend from the data and a trace-specific gain function reduces fluctuation of semivariogram values at large lags. Otherwise, geostatistical structures of surface reflection data are quite robust to the effects of data gains. Migration is observed to reduce the strength of diffraction features in the semivariogram fields and to increase the principal exponential range. Principal exponential range increases only slightly after application of migration with a realistic velocity but over-migration results in a significant artificial increase of exponential range. The geostatistical structures of radar reflection data exhibit marked dependence on antenna frequency, thus highlighting the critical importance of the scale of measurement. Specifically, the exponential ranges of radar reflection amplitudes decrease in proportion to the increased signal frequency for the 50 MHz, 100 MHz and 200 MHz range of antennas. Results demonstrate that processing and antenna frequency must be considered before the application of radar reflection data in a geostatistical context

    A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    Get PDF
    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 105 positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 107 cm−3 is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields

    Three-dimensional track reconstruction for directional Dark Matter detection

    Full text link
    Directional detection of Dark Matter is a promising search strategy. However, to perform such detection, a given set of parameters has to be retrieved from the recoiling tracks : direction, sense and position in the detector volume. In order to optimize the track reconstruction and to fully exploit the data of forthcoming directional detectors, we present a likelihood method dedicated to 3D track reconstruction. This new analysis method is applied to the MIMAC detector. It requires a full simulation of track measurements in order to compare real tracks to simulated ones. We conclude that a good spatial resolution can be achieved, i.e. sub-mm in the anode plane and cm along the drift axis. This opens the possibility to perform a fiducialization of directional detectors. The angular resolution is shown to range between 20∘^\circ to 80∘^\circ, depending on the recoil energy, which is however enough to achieve a high significance discovery of Dark Matter. On the contrary, we show that sense recognition capability of directional detectors depends strongly on the recoil energy and the drift distance, with small efficiency values (50%-70%). We suggest not to consider this information either for exclusion or discovery of Dark Matter for recoils below 100 keV and then to focus on axial directional data.Comment: 27 pages, 20 figure

    Coulomb Corrections for Coherent Electroproduction of Vector Mesons: Eikonal Approximation

    Get PDF
    Virtual radiative corrections due to the long range Coulomb forces of heavy nuclei with charge Z may lead to sizeable corrections to the Born cross section usually used for lepton-nucleus scattering processes. An introduction and presentation of the most important issues of the eikonal approximation is given. We present calculations for forward electroproduction production of rho mesons in a framework suggested by the VDM (vector dominance model), using the eikonal approximation. It turns out that Coulomb corrections may become relatively large. Some minor errors in the literature are corrected.Comment: 14 pages, 6 figures, published versio

    Results for the response function determination of the Compact Neutron Spectrometer

    Full text link
    The Compact Neutron Spectrometer (CNS) is a Joint European Torus (JET) Enhancement Project, designed for fusion diagnostics in different plasma scenarios. The CNS is based on a liquid scintillator (BC501A) which allows good discrimination between neutron and gamma radiation. Neutron spectrometry with a BC501A spectrometer requires the use of a reliable, fully characterized detector. The determination of the response matrix was carried out at the Ion Accelerator Facility (PIAF) of the Physikalisch-Technische Bundesanstalt (PTB). This facility provides several monoenergetic beams (2.5, 8, 10, 12 and 14 MeV) and a 'white field'(Emax ~17 MeV), which allows for a full characterization of the spectrometer in the region of interest (from ~1.5 MeV to ~17 MeV. The energy of the incoming neutrons was determined by the time of flight method (TOF), with time resolution in the order of 1 ns. To check the response matrix, the measured pulse height spectra were unfolded with the code MAXED and the resulting energy distributions were compared with those obtained from TOF. The CNS project required modification of the PTB BC501A spectrometer design, to replace an analog data acquisition system (NIM modules) with a digital system developed by the 'Ente per le Nuove tecnologie, l'Energia e l'Ambiente' (ENEA). Results for the new digital system were evaluated using new software developed specifically for this project.Comment: Proceedings of FNDA 201

    Approximate treatment of electron Coulomb distortion in quasielastic (e,e') reactions

    Full text link
    In this paper we address the adequacy of various approximate methods of including Coulomb distortion effects in (e,e') reactions by comparing to an exact treatment using Dirac-Coulomb distorted waves. In particular, we examine approximate methods and analyses of (e,e') reactions developed by Traini et al. using a high energy approximation of the distorted waves and phase shifts due to Lenz and Rosenfelder. This approximation has been used in the separation of longitudinal and transverse structure functions in a number of (e,e') experiments including the newly published 208Pb(e,e') data from Saclay. We find that the assumptions used by Traini and others are not valid for typical (e,e') experiments on medium and heavy nuclei, and hence the extracted structure functions based on this formalism are not reliable. We describe an improved approximation which is also based on the high energy approximation of Lenz and Rosenfelder and the analyses of Knoll and compare our results to the Saclay data. At each step of our analyses we compare our approximate results to the exact distorted wave results and can therefore quantify the errors made by our approximations. We find that for light nuclei, we can get an excellent treatment of Coulomb distortion effects on (e,e') reactions just by using a good approximation to the distorted waves, but for medium and heavy nuclei simple additional ad hoc factors need to be included. We describe an explicit procedure for using our approximate analyses to extract so-called longitudinal and transverse structure functions from (e,e') reactions in the quasielastic region.Comment: 30 pages, 8 figures, 16 reference

    Quantum Gravity Equation In Schroedinger Form In Minisuperspace Description

    Get PDF
    We start from classical Hamiltonian constraint of general relativity to obtain the Einstein-Hamiltonian-Jacobi equation. We obtain a time parameter prescription demanding that geometry itself determines the time, not the matter field, such that the time so defined being equivalent to the time that enters into the Schroedinger equation. Without any reference to the Wheeler-DeWitt equation and without invoking the expansion of exponent in WKB wavefunction in powers of Planck mass, we obtain an equation for quantum gravity in Schroedinger form containing time. We restrict ourselves to a minisuperspace description. Unlike matter field equation our equation is equivalent to the Wheeler-DeWitt equation in the sense that our solutions reproduce also the wavefunction of the Wheeler-DeWitt equation provided one evaluates the normalization constant according to the wormhole dominance proposal recently proposed by us.Comment: 11 Pages, ReVTeX, no figur
    • 

    corecore