5 research outputs found

    Glycerol Steam Reforming for Hydrogen Production over Nickel Supported on Alumina, Zirconia and Silica Catalysts

    Get PDF
    The aim of the work was to investigate the influence of support on the catalytic performance of Ni catalysts for the glycerol steam reforming reaction. Nickel catalysts (8 wt%) supported on Al2O3, ZrO2, SiO2 were prepared by the wet impregnation technique. The catalysts’ surface and bulk properties, at their calcined, reduced and used forms, were determined by ICP, BET, XRD, NH3-TPD, CO2-TPD, TPR, XPS, TEM, TPO, Raman, SEM techniques. The Ni/Si sample, even if it was less active for T <600 °C, produces more gaseous products and reveals higher H2 yield for the whole temperature range. Ni/Zr and Ni/Si catalysts facilitate the WGS reaction, producing a gas mixture with a high H2/CO molar ratio. Ni/Si after stability tests exhibits highest values for total (70%) and gaseous products (45%) glycerol conversion, YH2 (2.5), SH2 (80%), SCO2 (65%), H2/CO molar ratio (6.0) and lowest values for SCO (31%), SCH4 (3.1%), CO/CO2 molar ratio (0.48) among all samples. The contribution of the graphitized carbon formed on the catalysts follows the trend Ni/Si (I D /I G = 1.34) < Ni/Zr (I D /I G = 1.08) < Ni/Al (I D /I G = 0.88) and indicates that the fraction of different carbon types depends on the catalyst’s support nature. It is suggested that the type of carbon is rather more important than the amount of carbon deposited in determining stability. It is confirmed that the nature of the support affects mainly the catalytic performance of the active phase and that Ni/SiO2 can be considered as a promising catalyst for the glycerol steam reforming reaction

    Glycerol Steam Reforming for Hydrogen Production over Nickel Supported on Alumina, Zirconia and Silica Catalysts

    No full text
    The aim of the work was to investigate the influence of support on the catalytic performance of Ni catalysts for the glycerol steam reforming reaction. Nickel catalysts (8 wt%) supported on Al2O3, ZrO2, SiO2 were prepared by the wet impregnation technique. The catalysts’ surface and bulk properties, at their calcined, reduced and used forms, were determined by ICP, BET, XRD, NH3-TPD, CO2-TPD, TPR, XPS, TEM, TPO, Raman, SEM techniques. The Ni/Si sample, even if it was less active for T <600 °C, produces more gaseous products and reveals higher H2 yield for the whole temperature range. Ni/Zr and Ni/Si catalysts facilitate the WGS reaction, producing a gas mixture with a high H2/CO molar ratio. Ni/Si after stability tests exhibits highest values for total (70%) and gaseous products (45%) glycerol conversion, YH2 (2.5), SH2 (80%), SCO2 (65%), H2/CO molar ratio (6.0) and lowest values for SCO (31%), SCH4 (3.1%), CO/CO2 molar ratio (0.48) among all samples. The contribution of the graphitized carbon formed on the catalysts follows the trend Ni/Si (I D /I G = 1.34) < Ni/Zr (I D /I G = 1.08) < Ni/Al (I D /I G = 0.88) and indicates that the fraction of different carbon types depends on the catalyst’s support nature. It is suggested that the type of carbon is rather more important than the amount of carbon deposited in determining stability. It is confirmed that the nature of the support affects mainly the catalytic performance of the active phase and that Ni/SiO2 can be considered as a promising catalyst for the glycerol steam reforming reaction
    corecore