9 research outputs found

    High velocity dry spinning of nanofibrillated cellulose (CNF) filaments on an adhesion controlled surface with low friction

    No full text
    A new process for preparing thin cellulose nanofibril (CNF) filaments (thickness of 16 µm) was investigated by utilizing the dry spinning approach. In the process, CNF hydrogel was extruded through a fine nozzle onto an adhesion controlled capstan (drum) with low friction (slippery surface) at a speed of up to 11 m/s. The utilized capstan enables excellent line speed control when the slippery surface is applied, and prevents drying shrinkage of the spun filaments. The mechanical properties of prepared filaments can be optimized with the stretch ratio, the ratio of the speed of the drum surface, and the CNF jet flow. The developed method allows for manufacturing thin CNF filaments with an elevated spinning rate in a more controlled manner

    Understanding nanocellulose chirality and structure–properties relationship at the single fibril level

    No full text
    Nanocellulose fibrils are ubiquitous in nature and nanotechnologies but their mesoscopic structural assembly is not yet fully understood. Here we study the structural features of rod-like cellulose nanoparticles on a single particle level, by applying statistical polymer physics concepts on electron and atomic force microscopy images, and we assess their physical properties via quantitative nanomechanical mapping. We show evidence of right-handed chirality, observed on both bundles and on single fibrils. Statistical analysis of contours from microscopy images shows a non-Gaussian kink angle distribution. This is inconsistent with a structure consisting of alternating amorphous and crystalline domains along the contour and supports process-induced kink formation. The intrinsic mechanical properties of nanocellulose are extracted from nanoindentation and persistence length method for transversal and longitudinal directions, respectively. The structural analysis is pushed to the level of single cellulose polymer chains, and their smallest associated unit with a proposed 2 × 2 chain-packing arrangement

    Nanofibrils in nature and materials engineering

    No full text

    Design and applications of man-made biomimetic fibrillar hydrogels

    No full text
    corecore