11 research outputs found

    Robust domain adaptation for relation extraction via clustering consistency

    Full text link
    We propose a two-phase framework to adapt existing relation extraction classifiers to extract relations for new target domains. We address two challenges: negative transfer when knowledge in source domains is used without considering the differences in relation distributions; and lack of adequate labeled samples for rarer relations in the new domain, due to a small labeled data set and imbalance relation distributions. Our framework leverages on both labeled and unlabeled data in the target domain. First, we determine the relevance of each source domain to the target domain for each relation type, using the consistency between the clustering given by the target domain labels and the clustering given by the predictors trained for the source domain. To overcome the lack of labeled samples for rarer relations, these clusterings operate on both the labeled and unlabeled data in the target domain. Second, we trade-off between using relevance-weighted sourcedomain predictors and the labeled target data. Again, to overcome the imbalance distribution, the source-domain predictors operate on the unlabeled target data. Our method outperforms numerous baselines and a weakly-supervised relation extraction method on ACE 2004 and YAGO. © 2014 Association for Computational Linguistics

    Gaussian Process Pseudo-Likelihood Models for Sequence Labeling

    Full text link
    Several machine learning problems arising in natural language processing can be modeled as a sequence labeling problem. We provide Gaussian process models based on pseudo-likelihood approximation to perform sequence labeling. Gaussian processes (GPs) provide a Bayesian approach to learning in a kernel based framework. The pseudo-likelihood model enables one to capture long range dependencies among the output components of the sequence without becoming computationally intractable. We use an efficient variational Gaussian approximation method to perform inference in the proposed model. We also provide an iterative algorithm which can effectively make use of the information from the neighboring labels to perform prediction. The ability to capture long range dependencies makes the proposed approach useful for a wide range of sequence labeling problems. Numerical experiments on some sequence labeling data sets demonstrate the usefulness of the proposed approach.Comment: 18 pages, 5 figure

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Domain adaptation for coreference resolution: An adaptive ensemble approach

    Full text link
    We propose an adaptive ensemble method to adapt coreference resolution across domains. This method has three features: (1) it can optimize for any user-specified objective measure; (2) it can make document-specific prediction rather than rely on a fixed base model or a fixed set of base models; (3) it can automatically adjust the active ensemble members during prediction. With simplification, this method can be used in the traditional within-domain case, while still retaining the above features. To the best of our knowledge, this work is the first to both (i) develop a domain adaptation algorithm for the coreference resolution problem and (ii) have the above features as an ensemble method. Empirically, we show the benefits of (i) on the six domains of the ACE 2005 data set in domain adaptation setting, and of (ii) on both the MUC-6 and the ACE 2005 data sets in within-domain setting. © 2012 Association for Computational Linguistics

    A split-merge framework for comparing clusterings

    Full text link
    Clustering evaluation measures are frequently used to evaluate the performance of algorithms. However, most measures are not properly normalized and ignore some information in the inherent structure of clusterings. We model the relation between two clusterings as a bipartite graph and propose a general component-based decomposition formula based on the components of the graph. Most existing measures are examples of this formula. In order to satisfy consistency in the component, we further propose a split-merge framework for comparing clusterings of different data sets. Our framework gives measures that are conditionally normalized, and it can make use of data point information, such as feature vectors and pairwise distances. We use an entropy-based instance of the framework and a coreference resolution data set to demonstrate empirically the utility of our framework over other measures. Copyright 2012 by the author(s)/owner(s)
    corecore