16 research outputs found

    Ammonia from steelworks

    Get PDF
    Ammonia has been produced over the last centuries in several ways, with the Haber–Bosch process leading current production due to its efficiency and feasible deployment. However, previous to the leading positioning of the Haber–Bosch process, ammonia used to be manufactured using coal-based gas works. Coke, a remnant of the process, has been widely used for steel production processes, thus making reasonable the integration of these gas facilities into the production of steel for better economic profiles. Although this ammonia production process is currently used only in a minor share of the total ammonia market, there are locations where it is still employed to obtain the chemical for fertilizing applications. This chapter is dedicated to the production of ammonia from such steelworks, detailing some of the history, fundamental and current trends behind the process that set the foundations of ammonia as one of the main global chemicals. Steel, which will still be produced over decades, can indirectly provide a chemical that supports a more sustainable agenda if better process integration is achieved, minimizing emissions and energy losses

    Combining biocatalyzed electrolysis with anaerobic digestion

    No full text
    Biocatalyzed electrolysis is a microbial fuel cell based technology for the generation of hydrogen gas and other reduced products out of electron donors. Examples of electron donors are acetate and wastewater. An external power supply can support the process and therefore circumvent thermodynamical constraints that normally render the generation of compounds such as hydrogen unlikely. We have investigated the possibility of biocatalyzed electrolysis for the generation of methane. The cathodically produced hydrogen could be converted into methane at a ratio of 0.41 mole methane mole acetate, at temperatures of 22 ± 2°C. The anodic oxidation of acetate was not hampered by ammonium concentrations up to 5gNL. An overview is given of potential applications for biocatalyzed electrolysis
    corecore