19 research outputs found

    High-resolution residual geoid and gravity anomaly data of the northern Indian Ocean - An input to geological understanding

    No full text
    Geoid data are more sensitive to density distributions deep within the Earth, thus the data are useful for studying the internal processes of the Earth leading to formation of geological structures. In this paper, we present much improved version of high resolution (1' x 1') geoid anomaly map of the northern Indian Ocean generated from the altimeter data obtained from Geodetic Missions of GEOSAT and ERS-1 along with ERS-2, TOPEX/POSIDEON and JASON satellites. The geoid map of the Indian Ocean is dominated by a significant.low of 106 m south of Sri Lanka, named as the Indian Ocean Geoid Low (IOGL), whose origin is not clearly known yet. The residual geoid data are retrieved from the geoid data by removing the long-wavelength core-mantle density effects using recent spherical harmonic coefficients of Earth Gravity Model 2008 (EGM2008) up to degree and order 50 from the observed geoid data. The coefficients are smoothly rolled off between degrees 30-70 in order to avoid artifacts related to the sharp truncation at degree 50. With this process we observed significant improvement in the residual geoid data when compared to the previous low-spatial resolution maps. The previous version was superposed by systematic broad regional highs and lows (like checker board) with amplitude up to +/- 12 m, though the trends of geoid in general match in both versions. These methodical artifacts in the previous version may have arisen due to the use of old Rapp's geo-potential model coefficients, as well as sharp truncation of reference model at degree and order 50. Geoid anomalies are converted to free-air gravity anomalies and validated with cross-over corrected ship-borne gravity data of the Arabian Sea and Bay of Bengal. The present satellite derived gravity data matches well with the ship-bome data with Root Mean Square Error (RMSE) of 5.1-7.8 mGal, and this is found to be within the error limits when compared with other globally available satellite data. Spectral analysis of ship-borne and satellite data suggested that the satellite gravity data have a resolution down to 16-18 km. Further, the geoid, residual geoid and gravity anomalies are integrated with seismic data along two profiles in the Bay of Bengal and Arabian Sea, and inferences have been made in terms of density distributions at different depths. The new residual geoid anomaly map shows excellent correlation with regional tectonic features such as Sunda subduction zone, volcanic traces (Chagos-Laccadive, Ninetyeast and 85 degrees E ridges) and mid-ocean ridge systems (Central Indian and Carlsberg ridges). (C) 2012 Elsevier Ltd. All rights reserved

    Sediment geochemistry of coastal environments, southern Kerala, India: implication for provenance

    No full text
    Late Quaternary sediments representing the floodplain, estuary and offshore environments of southern Kerala were investigated to infer provenance. The grain size reveals the dominance of sand to silty clay, clay to clayey silt and clayey silt in the floodplain, estuary and offshore sediments, respectively. The chemical index of alteration (CIA) values and A-CN-K plot attributes to high, moderate and low weathering in floodplain, estuary and offshore regions, respectively. The SiO 2 /Al 2 O 3 values lesser than Post-Archean Australian Shale indicate low to moderate maturity for the estuarine and offshore sediments. The geochemical immaturity indicates its derivation from low to moderately weathered source rocks. The major and trace elemental ratios and discriminant function diagrams attribute that the sediments were derived from intermediate to felsic source rocks. The enrichment of Cr and Ni concentration in the sediments compared to the upper continental crust, related to the contribution of orthopyroxenes, weathered from charnockite and garnets from the granulite terrain, respectively
    corecore