66 research outputs found

    High-sensitivity diamond magnetometer with nanoscale resolution

    Full text link
    We present a novel approach to the detection of weak magnetic fields that takes advantage of recently developed techniques for the coherent control of solid-state electron spin quantum bits. Specifically, we investigate a magnetic sensor based on Nitrogen-Vacancy centers in room-temperature diamond. We discuss two important applications of this technique: a nanoscale magnetometer that could potentially detect precession of single nuclear spins and an optical magnetic field imager combining spatial resolution ranging from micrometers to millimeters with a sensitivity approaching few femtotesla/Hz1/2^{1/2}.Comment: 29 pages, 4 figure

    Modulation of Hydrogen Peroxide Production in Cellular Systems by Low Level Magnetic Fields

    Get PDF
    Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, suggesting that ROS might be involved in the development of these cells. However, recent studies suggest that inducing an excess of ROS in cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumors frequently exhibit multiple genetic alterations and high oxidative stress, suggesting that it might be possible to preferentially modulate the development of these cells by controlling their ROS production. Low levels of ROS are also important for the development and survival of normal cells. In this manuscript, we present data on the influence of the suppression of the Earth's magnetic field (low level magnetic fields or LLF) which magnitudes range from 0.2 µT to 2 µT on the modulation of hydrogen peroxide (H2O2) in human fibrosarcoma cancer cell line HT1080, pancreatic AsPC-1 cancer cell line, and bovine pulmonary artery endothelial cells (PAEC) exposed to geomagnetic field (control; 45 µT–60 µT). Reduction of the Earth's magnetic field suppressed H2O2 production in cancer cells and PAEC. The addition of catalase and superoxide dismutase (SOD) mimetic MnTBAP inhibited the magnetic field effect. Modulating ROS production by magnetic fields may open new venues of biomedical research and therapeutic strategies

    Electron spin coherence exceeding seconds in high purity silicon

    Full text link
    Silicon is undoubtedly one of the most promising semiconductor materials for spin-based information processing devices. Its highly advanced fabrication technology facilitates the transition from individual devices to large-scale processors, and the availability of an isotopically-purified 28^{28}Si form with no magnetic nuclei overcomes what is a main source of spin decoherence in many other materials. Nevertheless, the coherence lifetimes of electron spins in the solid state have typically remained several orders of magnitude lower than what can be achieved in isolated high-vacuum systems such as trapped ions. Here we examine electron spin coherence of donors in very pure 28^{28}Si material, with a residual 29^{29}Si concentration of less than 50 ppm and donor densities of 10141510^{14-15} per cm3^3. We elucidate three separate mechanisms for spin decoherence, active at different temperatures, and extract a coherence lifetime T2T_2 up to 2 seconds. In this regime, we find the electron spin is sensitive to interactions with other donor electron spins separated by ~200 nm. We apply a magnetic field gradient in order to suppress such interactions and obtain an extrapolated electron spin T2T_2 of 10 seconds at 1.8 K. These coherence lifetimes are without peer in the solid state by several orders of magnitude and comparable with high-vacuum qubits, making electron spins of donors in silicon ideal components of a quantum computer, or quantum memories for systems such as superconducting qubits.Comment: 18 pages, 4 figures, supplementary informatio

    Recovering complete and draft population genomes from metagenome datasets

    Get PDF
    Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem of chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution

    Birth, growth and computation of pi to ten trillion digits

    Get PDF
    corecore