148 research outputs found
Nitroxyl (HNO) Stimulates Soluble Guanylyl Cyclase to Suppress Cardiomyocyte Hypertrophy and Superoxide Generation
Background: New therapeutic targets for cardiac hypertrophy, an independent risk factor for heart failure and death, are essential. HNO is a novel redox sibling of NON attracting considerable attention for the treatment of cardiovascular disorders, eliciting cGMP-dependent vasodilatation yet cGMP-independent positive inotropy. The impact of HNO on cardiac hypertrophy (which is negatively regulated by cGMP) however has not been investigated. Methods: Neonatal rat cardiomyocytes were incubated with angiotensin II (Ang II) in the presence and absence of the HNO donor Angeli’s salt (sodium trioxodinitrate) or B-type natriuretic peptide, BNP (all 1 mmol/L). Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. Results: We now demonstrate that Angeli’s salt inhibits Ang II-induced hypertrophic responses in cardiomyocytes, including increases in cardiomyocyte size, de novo protein synthesis and b-myosin heavy chain expression. Angeli’s salt also suppresses Ang II induction of key triggers of the cardiomyocyte hypertrophic response, including NADPH oxidase (on both Nox2 expression and superoxide generation), as well as p38 mitogen-activated protein kinase (p38MAPK). The antihypertrophic, superoxide-suppressing and cGMP-elevating effects of Angeli’s salt were mimicked by BNP. We also demonstrate that the effects of Angeli’s salt are specifically mediated by HNO (with no role for NON or nitrite), with subsequent activation of cardiomyocyte soluble guanylyl cyclase (sGC) and cGMP signaling (on both cGMP-dependen
Single-Unit Activity in the Medial Prefrontal Cortex during Immediate and Delayed Extinction of Fear in Rats
Delivering extinction trials minutes after fear conditioning yields only a short-term fear suppression that fully recovers the following day. Because extinction has been reported to increase CS-evoked spike firing and spontaneous bursting in the infralimbic (IL) division of the medial prefrontal cortex (mPFC), we explored the possibility that this immediate extinction deficit is related to altered mPFC function. Single-units were simultaneously recorded in rats from neurons in IL and the prelimbic (PrL) division of the mPFC during an extinction session conducted 10 minutes (immediate) or 24 hours (delayed) after auditory fear conditioning. In contrast to previous reports, IL neurons exhibited CS-evoked responses early in extinction training in both immediate and delayed conditions and these responses decreased in magnitude over the course of extinction training. During the retention test, CS-evoked firing in IL was significantly greater in animals that failed to acquire extinction. Spontaneous bursting during the extinction and test sessions was also different in the immediate and delayed groups. There were no group differences in PrL activity during extinction or retention testing. Alterations in both spontaneous and CS-evoked neuronal activity in the IL may contribute to the immediate extinction deficit
From Fermi Arcs to the Nodal Metal: Scaling of the Pseudogap with Doping and Temperature
The pseudogap phase in the cuprates is a most unusual state of matter: it is
a metal, but its Fermi surface is broken up into disconnected segments known as
Fermi arcs. Using angle resolved photoemission spectroscopy, we show that the
anisotropy of the pseudogap in momentum space and the resulting arcs depend
only on the ratio T/T*(x), where T*(x) is the temperature below which the
pseudogap first develops at a given hole doping x. In particular, the arcs
collapse linearly with T/T* and extrapolate to zero extent as T goes to 0. This
suggests that the T = 0 pseudogap state is a nodal liquid, a strange metallic
state whose gapless excitations are located only at points in momentum space,
just as in a d-wave superconductor.Comment: to appear, Nature Physics (July 2006
Effects of two common polymorphisms in the 3' untranslated regions of estrogen receptor β on mRNA stability and translatability
Estrogen signaling is mediated by estrogen receptors (ERs), ERα and ERβ. Aberrant
estrogen signaling is involved in breast cancer development. ERα is one of the key
biomarkers for diagnosis and treatment of breast cancer. Unlike ERα, ERβ is still not
introduced as a marker for diagnosis and established as a target of therapy. Numerous
studies suggest antiproliferative effects of ERβ, however its role remains to be fully
explored. Albeit important, ERα is not a perfect marker, and some aspects of ERα
function are still unclear. This thesis aims to characterize distinct molecular facets of
ER action relevant for breast cancer and provide valuable information for ER-based
diagnosis and treatment design.
In PAPER I, we analyzed the functionality of two common single
nucleotide polymorphisms in the 3’ untranslated regions of ERβ, rs4986938 and
rs928554, which have been extensively investigated for association with various
diseases. A significant difference in allelic expression was observed for rs4986938 in
breast tumor samples from heterozygous individuals. However, no difference in mRNA
stability or translatability between the alleles was observed.
In PAPER II, we provided a more comprehensive understanding of ERβ
function independent of ERα. A global gene expression analysis in a HEK293/ERβ cell
model identified a set of ERβ-regulated genes. Gene Ontology (GO) analysis showed
that they are involved in cell-cell signaling, morphogenesis and cell proliferation.
Moreover, ERβ expression resulted in a significant decrease in cell proliferation.
In PAPER III, using the human breast cancer MCF-7/ERβ cell model,
we demonstrated, for the first time, the binding of ERα/β heterodimers to various
DNA-binding regions in intact chromatin.
In PAPER IV, we investigated a potential cross-talk between estrogen
signaling and DNA methylation by identifying their common target genes in MCF-7
cells. Gene expression profiling identified around 150 genes regulated by both 17β-
estradiol (E2) and a hypomethylating agent 5-aza-2’-deoxycytidine. Based on GO
analysis, CpG island prediction analysis and previously reported ER binding regions,
we selected six genes for further analysis. We identified BTG3 and FHL2 as direct
target genes of both pathways. However, our data did not support a direct molecular
interplay of mediators of estrogen and epigenetic signaling at promoters of regulated
genes.
In PAPER V, we further explored the interactions between estrogen
signaling and DNA methylation, with focus on DNA methyltransferases (DNMT1,
DNMT3a and DNMT3b). E2, via ERα, up-regulated DNMT1 and down-regulated
DNMT3a and DNMT3b mRNA expression. Furthermore, DNMT3b interacted with
ERα. siRNA-mediated DNMT3b depletion increased the expression of two genes,
CDKN1A and FHL2. We proposed that the molecular mechanism underlying
regulation of FHL2 and CDKN1A gene expression involves interplay of DNMT3b and
ERα.
In conclusion, the studies presented in this thesis contribute to the knowledge of ERβ
function, and give additional insight into the cross-talk mechanisms underlying ERα
signaling with ERβ and with DNA methylation pathways
Similar Neural Activity during Fear and Disgust in the Rat Basolateral Amygdala
Much research has focused on how the amygdala processes individual affects, yet little is known about how multiple types of positive and negative affects are encoded relative to one another at the single-cell level. In particular, it is unclear whether different negative affects, such as fear and disgust, are encoded more similarly than negative and positive affects, such as fear and pleasure. Here we test the hypothesis that the basolateral nucleus of the amygdala (BLA), a region known to be important for learned fear and other affects, encodes affective valence by comparing neuronal activity in the BLA during a conditioned fear stimulus (fear CS) with activity during intraoral delivery of an aversive fluid that induces a disgust response and a rewarding fluid that induces a hedonic response. Consistent with the hypothesis, neuronal activity during the fear CS and aversive fluid infusion, but not during the fear CS and rewarding fluid infusion, was more similar than expected by chance. We also found that the greater similarity in activity during the fear- and disgust-eliciting stimuli was specific to a subpopulation of cells and a limited window of time. Our results suggest that a subpopulation of BLA neurons encodes affective valence during learned fear, and furthermore, within this subpopulation, different negative affects are encoded more similarly than negative and positive affects in a time-specific manner
Resolving the neural circuits of anxiety
Although anxiety disorders represent a major societal problem demanding new therapeutic targets, these efforts have languished in the absence of a mechanistic understanding of this subjective emotional state. While it is impossible to know with certainty the subjective experience of a rodent, rodent models hold promise in dissecting well-conserved limbic circuits. The application of modern approaches in neuroscience has already begun to unmask the neural circuit intricacies underlying anxiety by allowing direct examination of hypotheses drawn from existing psychological concepts. This information points toward an updated conceptual model for what neural circuit perturbations could give rise to pathological anxiety and thereby provides a roadmap for future therapeutic development.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (NIH Director’s New Innovator Award DP2-DK-102256-01)National Institute of Mental Health (U.S.) (NIH) R01-MH102441-01)JPB Foundatio
Systematic assessment of training-induced changes in corticospinal output to hand using frameless stereotaxic transcranial magnetic stimulation.
Measuring changes in the characteristics of corticospinal output has become a critical part of assessing the impact of motor experience on cortical organization in both the intact and injured human brain. In this protocol we describe a method for systematically assessing training-induced changes in corticospinal output that integrates volumetric anatomical MRI with transcranial magnetic stimulation (TMS). A TMS coil is sited to a target grid superimposed onto a 3D MRI of cortex using a stereotaxic neuronavigation system. Subjects are then required to exercise the first dorsal interosseus (FDI) muscle on two different tasks for a total of 30 min. The protocol allows for reliably and repeatedly detecting changes in corticospinal output to FDI muscle in response to brief periods of motor training
Neuropsychological Sequelae of Carotid Angioplasty with Stent Placement: Correlation with Ischemic Lesions in Diffusion Weighted Imaging
BACKGROUND AND PURPOSE: Few studies investigated the neuropsychological outcome after carotid angioplasty with stent placement (CAS), yielding partially inconsistent results. The present investigation evaluated the effect of CAS in patients with high-grade stenosis and assessed the predictive value of ischemic lesion number for postinterventional cognitive deterioration. METHODS: 22 patients were tested neuropsychologically before and six weeks after CAS. Cerebral ischemic changes were assessed with diffusion weighted imaging (DWI) prior to and after angioplasty. RESULTS: Pre- to postinterventional cognitive performance improved significantly in terms of verbal memory (t = -2.30; p<0.05), whereas significant deterioration was noted regarding verbal memory span (t = 2.31; p<0.05). 8 (36%) persons conformed to the criteria of cognitive improvement. 6 patients (27%) were postinterventionally classified as having deficits. Analysis yielded no statistically significant correlations between lesion quantity and cognitive change. CONCLUSION: Both improvement and deterioration of cognitive functioning was observed in our collective of patients, leaving the neuropsychological outcome after percutaneous transluminal angioplasty unpredictable in individual cases. The presence of acute ischemic lesions on DWI was found to be not tightly associated with cognitive dysfunction after CAS
Structural Brain Changes Related to Disease Duration in Patients with Asthma
Dyspnea is the impairing, cardinal symptom patients with asthma repeatedly experience over the course of the disease. However, its accurate perception is also crucial for timely initiation of treatment. Reduced perception of dyspnea is associated with negative treatment outcome, but the underlying brain mechanisms of perceived dyspnea in patients with asthma remain poorly understood. We examined whether increasing disease duration in fourteen patients with mild-to-moderate asthma is related to structural brain changes in the insular cortex and brainstem periaqueductal grey (PAG). In addition, the association between structural brain changes and perceived dyspnea were studied. By using magnetic resonance imaging in combination with voxel-based morphometry, gray matter volumes of the insular cortex and the PAG were analysed and correlated with asthma duration and perceived affective unpleasantness of resistive load induced dyspnea. Whereas no associations were observed for the insular cortex, longer duration of asthma was associated with increased gray matter volume in the PAG. Moreover, increased PAG gray matter volume was related to reduced ratings of dyspnea unpleasantness. Our results demonstrate that increasing disease duration is associated with increased gray matter volume in the brainstem PAG in patients with mild-to-moderate asthma. This structural brain change might contribute to the reduced perception of dyspnea in some patients with asthma and negatively impact the treatment outcome
- …