18 research outputs found

    MPP+-induced cytotoxicity in neuroblastoma cells: Antagonism and reversal by guanosine

    Get PDF
    Guanosine exerts neuroprotective effects in the central nervous system. Apoptosis, a morphological form of programmed cell death, is implicated in the pathophysiology of Parkinson’s disease (PD). MPP+, a dopaminergic neurotoxin, produces in vivo and in vitro cellular changes characteristic of PD, such as cytotoxicity, resulting in apoptosis. Undifferentiated human SH-SY5Y neuroblastoma cells had been used as an in vitro model of Parkinson’s disease. We investigated if extracellular guanosine affected MPP+-induced cytotoxicity and examined the molecular mechanisms mediating its effects. Exposure of neuroblastoma cells to MPP+ (10 μM–5 mM for 24–72 h) induced DNA fragmentation in a time-dependent manner (p < 0.05). Administration of guanosine (100 μM) before, concomitantly with or, importantly, after the addition of MPP+ abolished MPP+-induced DNA fragmentation. Addition of MPP+ (500 μM) to cells increased caspase-3 activity over 72 h (p < 0.05), and this was abolished by pre- or co-treatment with guanosine. Exposure of cells to pertussis toxin prior to MPP+ eliminated the anti-apoptotic effect of guanosine, indicating that this effect is dependent on a Gi protein-coupled receptor, most likely the putative guanosine receptor. The protection by guanosine was also abolished by the selective inhibitor of the enzyme PI-3-K/Akt/PKB (LY294002), confirming that this pathway plays a decisive role in this effect of guanosine. Neither MPP+ nor guanosine had any significant effect on α-synuclein expression. Thus, guanosine antagonizes and reverses MPP+-induced cytotoxicity of neuroblastoma cells via activation of the cell survival pathway, PI-3-K/Akt/PKB. Our results suggest that guanosine may be an effective pharmacological intervention in PD

    Roles of P2 receptors in glial cells: focus on astrocytes

    Get PDF
    Central nervous system glial cells release and respond to nucleotides under both physiological and pathological conditions, suggesting that these molecules play key roles in both normal brain function and in repair after damage. In particular, ATP released from astrocytes activates P2 receptors on astrocytes and other brain cells, allowing a form of homotypic and heterotypic signalling, which also involves microglia, neurons and oligodendrocytes. Multiple P2X and P2Y receptors are expressed by both astrocytes and microglia; however, these receptors are differentially recruited by nucleotides, depending upon specific pathophysiological conditions, and also mediate the long-term trophic changes of these cells during inflammatory gliosis. In astrocytes, P2-receptor-induced gliosis occurs via activation of the extracellular-regulated kinases (ERK) and protein kinase B/Akt pathways and involves induction of inflammatory and anti-inflammatory genes, cyclins, adhesion and antiapoptotic molecules. While astrocytic P2Y1 and P2Y2,4 are primarily involved in short-term calcium-dependent signalling, multiple P2 receptor subtypes seem to cooperate to astrocytic long-term changes. Conversely, in microglia, exposure to inflammatory and immunological stimuli results in differential functional changes of distinct P2 receptors, suggesting highly specific roles in acquisition of the activated phenotype. We believe that nucleotide-induced activation of astrocytes and microglia may originally start as a defence mechanism to protect neurons from cytotoxic and ischaemic insults; dysregulation of this process in chronic inflammatory diseases eventually results in neuronal cell damage and loss. On this basis, full elucidation of the specific roles of P2 receptors in these cells may help exploit the beneficial neuroprotective features of activated glia while attenuating their harmful properties and thus provide the basis for novel neuroprotective strategies that specifically target the purinergic system

    Guanosine effect on cholesterol efflux and apolipoprotein E expression in astrocytes

    Get PDF
    The main source of cholesterol in the central nervous system (CNS) is represented by glial cells, mainly astrocytes, which also synthesise and secrete apolipoproteins, in particular apolipoprotein E (ApoE), the major apolipoprotein in the brain, thus generating cholesterol-rich high density lipoproteins (HDLs). This cholesterol trafficking, even though still poorly known, is considered to play a key role in different aspects of neuronal plasticity and in the stabilisation of synaptic transmission. Moreover, cell cholesterol depletion has recently been linked to a reduction in amyloid beta formation. Here we demonstrate that guanosine, which we previously reported to exert several neuroprotective effects, was able to increase cholesterol efflux from astrocytes and C6 rat glioma cells in the absence of exogenously added acceptors. In this effect the phosphoinositide 3 kinase/extracellular signal-regulated kinase 1/2 (PI3K/ERK1/2) pathway seems to play a pivotal role. Guanosine was also able to increase the expression of ApoE in astrocytes, whereas it did not modify the levels of ATP-binding cassette protein A1 (ABCA1), considered the main cholesterol transporter in the CNS. Given the emerging role of cholesterol balance in neuronal repair, these effects provide evidence for a role of guanosine as a potential pharmacological tool in the modulation of cholesterol homeostasis in the brain

    Remyelination after chronic spinal cord injury is associated with proliferation of endogenous adult progenitor cells after systemic administration of guanosine

    Get PDF
    Axonal demyelination is a consistent pathological sequel to chronic brain and spinal cord injuries and disorders that slows or disrupts impulse conduction, causing further functional loss. Since oligodendroglial progenitors are present in the demyelinated areas, failure of remyelination may be due to lack of sufficient proliferation and differentiation of oligodendroglial progenitors. Guanosine stimulates proliferation and differentiation of many types of cells in vitro and exerts neuroprotective effects in the central nervous system (CNS). Five weeks after chronic traumatic spinal cord injury (SCI), when there is no ongoing recovery of function, intraperitoneal administration of guanosine daily for 2 weeks enhanced functional improvement correlated with the increase in myelination in the injured cord. Emphasis was placed on analysis of oligodendrocytes and NG2-positive (NG2+) cells, an endogenous cell population that may be involved in oligodendrocyte replacement. There was an increase in cell proliferation (measured by bromodeoxyuridine staining) that was attributable to an intensification in progenitor cells (NG2+ cells) associated with an increase in mature oligodendrocytes (determined by Rip+ staining). The numbers of astroglia increased at all test times after administration of guanosine whereas microglia only increased in the later stages (14 days). Injected guanosine and its breakdown product guanine accumulated in the spinal cords; there was more guanine than guanosine detected. We conclude that functional improvement and remyelination after systemic administration of guanosine is due to the effect of guanosine/guanine on the proliferation of adult progenitor cells and their maturation into myelin-forming cells. This raises the possibility that administration of guanosine may be useful in the treatment of spinal cord injury or demyelinating diseases such as multiple sclerosis where quiescent oligodendroglial progenitors exist in demyelinated plaques

    Guanosine reduces apoptosis and inflammation associated with restoration of function in rats with acute spinal cord injury

    Get PDF
    Spinal cord injury results in progressive waves of secondary injuries, cascades of noxious pathological mechanisms that substantially exacerbate the primary injury and the resultant permanent functional deficits. Secondary injuries are associated with inflammation, excessive cytokine release, and cell apoptosis. The purine nucleoside guanosine has significant trophic effects and is neuroprotective, antiapoptotic in vitro, and stimulates nerve regeneration. Therefore, we determined whether systemic administration of guanosine could protect rats from some of the secondary effects of spinal cord injury, thereby reducing neurological deficits. Systemic administration of guanosine (8 mg/kg per day, i.p.) for 14 consecutive days, starting 4 h after moderate spinal cord injury in rats, significantly improved not only motor and sensory functions, but also recovery of bladder function. These improvements were associated with reduction in the inflammatory response to injury, reduction of apoptotic cell death, increased sparing of axons, and preservation of myelin. Our data indicate that the therapeutic action of guanosine probably results from reducing inflammation resulting in the protection of axons, oligodendrocytes, and neurons and from inhibiting apoptotic cell death. These data raise the intriguing possibility that guanosine may also be able to reduce secondary pathological events and thus improve functional outcome after traumatic spinal cord injury in humans

    Guanosine stimulates neurite outgrowth in PC12 cells via activation of heme oxygenase and cyclic GMP

    Get PDF
    Undifferentiated rat pheochromocytoma (PC12) cells extend neurites when cultured in the presence of nerve growth factor (NGF). Extracellular guanosine synergistically enhances NGF-dependent neurite outgrowth. We investigated the mechanism by which guanosine enhances NGF-dependent neurite outgrowth. Guanosine administration to PC12 cells significantly increased guanosine 3-5-cyclic monophosphate (cGMP) within the first 24 h whereas addition of soluble guanylate cyclase (sGC) inhibitors abolished guanosine-induced enhancement of NGF-dependent neurite outgrowth. sGC may be activated either by nitric oxide (NO) or by carbon monoxide (CO). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} NωN^{\omega } \end{document}-Nitro-l-arginine methyl ester (l-NAME), a non-isozyme selective inhibitor of nitric oxide synthase (NOS), had no effect on neurite outgrowth induced by guanosine. Neither nNOS (the constitutive isoform), nor iNOS (the inducible isoform) were expressed in undifferentiated PC12 cells, or under these treatment conditions. These data imply that NO does not mediate the neuritogenic effect of guanosine. Zinc protoporphyrin-IX, an inhibitor of heme oxygenase (HO), reduced guanosine-dependent neurite outgrowth but did not attenuate the effect of NGF. The addition of guanosine plus NGF significantly increased the expression of HO-1, the inducible isozyme of HO, after 12 h. These data demonstrate that guanosine enhances NGF-dependent neurite outgrowth by first activating the constitutive isozyme HO-2, and then by inducing the expression of HO-1, the enzymes responsible for CO synthesis, thus stimulating sGC and increasing intracellular cGMP

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore