9 research outputs found

    An investigation of fingerstick blood collection for pointof- care HIV-1 viral load monitoring in South Africa

    Get PDF
    Background: Viral load (VL) quantification is an important tool in determining newly developed drug resistance or problems with adherence to antiretroviral therapy (ART) in HIV-positive patients. VL monitoring is becoming the standard of care in many resource-limited settings. Testing in resource-limited settings may require sampling by fingerstick because of general shortages of skilled phlebotomists and the expense of venepuncture supplies and problems with their distribution.Objective: To assess the feasibility and ease of collecting 150 ÎĽL capillary blood needed for the use of a novel collection device following a classic fingerstick puncture.Methods: Patients were recruited by the study nurse upon arrival for routine ART monitoring at the Themba Lethu Clinic in Johannesburg, South Africa. Each step of the fingerstick and blood collection protocol was observed, and their completion or omission was recorded.Results: One hundred and three patients consented to the study, of whom three were excluded owing to the presence of callouses. From a total of 100 patients who consented and were enrolled, 98% of collection attempts were successful and 86% of participants required only one fingerstick to successfully collect 150 ÎĽL capillary blood. Study nurse adherence to the fingerstick protocol revealed omissions in several steps that may lower the success rate of capillary blood collection and reduce the performance of a subsequent VL assay.Conclusion: The findings of this study support the feasibility of collecting 150 ÎĽL of capillary blood via fingerstick for point-of-care HIV-1 VL testing in a resource-limited setting

    G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests

    Get PDF
    Malaria elimination will be possible only with serious attempts to address asymptomatic infection and chronic infection by both Plasmodium falciparum and Plasmodium vivax. Currently available drugs that can completely clear a human of P. vivax (known as “radical cure”), and that can reduce transmission of malaria parasites, are those in the 8-aminoquinoline drug family, such as primaquine. Unfortunately, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency risk having severe adverse reactions if exposed to these drugs at certain doses. G6PD deficiency is the most common human enzyme defect, affecting approximately 400 million people worldwide. Scaling up radical cure regimens will require testing for G6PD deficiency, at two levels: 1) the individual level to ensure safe case management, and 2) the population level to understand the risk in the local population to guide Plasmodium vivax treatment policy. Several technical and operational knowledge gaps must be addressed to expand access to G6PD deficiency testing and to ensure that a patient’s G6PD status is known before deciding to administer an 8-aminoquinoline-based drug. In this report from a stakeholder meeting held in Thailand on October 4 and 5, 2012, G6PD testing in support of radical cure is discussed in detail. The focus is on challenges to the development and evaluation of G6PD diagnostic tests, and on challenges related to the operational aspects of implementing G6PD testing in support of radical cure. The report also describes recommendations for evaluation of diagnostic tests for G6PD deficiency in support of radical cure
    corecore