35 research outputs found

    A High-Value, Low-Cost Bubble Continuous Positive Airway Pressure System for Low-Resource Settings: Technical Assessment and Initial Case Reports

    Get PDF
    Acute respiratory infections are the leading cause of global child mortality. In the developing world, nasal oxygen therapy is often the only treatment option for babies who are suffering from respiratory distress. Without the added pressure of bubble Continuous Positive Airway Pressure (bCPAP) which helps maintain alveoli open, babies struggle to breathe and can suffer serious complications, and frequently death. A stand-alone bCPAP device can cost 6,000,tooexpensiveformostdevelopingworldhospitals.Here,wedescribethedesignandtechnicalevaluationofanew,ruggedbCPAPsystemthatcanbemadeinsmallvolumeforacostofgoodsofapproximately6,000, too expensive for most developing world hospitals. Here, we describe the design and technical evaluation of a new, rugged bCPAP system that can be made in small volume for a cost-of-goods of approximately 350. Moreover, because of its simple designラconsumergrade pumps, medical tubing, and regulators—it requires only the simple replacement of a ,$1 diaphragm approximately every 2 years for maintenance. The low-cost bCPAP device delivers pressure and flow equivalent to those of a reference bCPAP system used in the developed world. We describe the initial clinical cases of a child with bronchiolitis and a neonate with respiratory distress who were treated successfully with the new bCPAP device

    What scans we will read: imaging instrumentation trends in clinical oncology

    Get PDF
    Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non- invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/ CT), advanced MRI, optical or ultrasound imaging. This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now. Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis, including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi- dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging

    Whole-genome sequencing of multiple myeloma reveals oncogenic pathways are targeted somatically through multiple mechanisms.

    Get PDF
    Multiple myeloma (MM) is a biologically heterogeneous malignancy, however, the mechanisms underlying this complexity are incompletely understood. We report an analysis of the whole-genome sequencing of 765 MM patients from CoMMpass. By employing promoter capture Hi-C in naïve B-cells, we identify cis-regulatory elements (CREs) that represent a highly enriched subset of the non-coding genome in which to search for driver mutations. We identify regulatory regions whose mutation significantly alters the expression of genes as candidate non-coding drivers, including copy number variation (CNV) at CREs of MYC and single-nucleotide variants (SNVs) in a PAX5 enhancer. To better inform the interplay between non-coding driver mutations with other driver mechanisms, and their respective roles in oncogenic pathways, we extended our analysis identifying coding drivers in 40 genes, including 11 novel candidates. We demonstrate the same pathways can be targeted by coding and non-coding mutations; exemplified by IRF4 and PRDM1, along with BCL6 and PAX5, genes that are central to plasma cell differentiation. This study reveals new insights into the complex genetic alterations driving MM development and an enhanced understanding of oncogenic pathways

    The impact of sexual harassment on job satisfaction, turnover intentions, and absenteeism: findings from Pakistan compared to the United States

    Get PDF
    The purpose of this study was to compare and contrast how differences in perceptions of sexual harassment impact productive work environments for employees in Pakistan as compared to the US; in particular, how it affects job satisfaction, turnover, and/or absenteeism. This study analyzed employee responses in Pakistan (n = 146) and the United States (n = 102, 76) using questionnaire data. Significant results indicated that employees who were sexually harassed reported (a) a decrease in job satisfaction (b) greater turnover intentions and (c) a higher rate of absenteeism. Cross-cultural comparisons indicated that (a) Pakistani employees who were sexually harassed had greater job dissatisfaction and higher overall absenteeism than did their US counterparts and (b) Pakistani women were more likely to use indirect strategies to manage sexual harassment than were US targets

    CIC-Mutation As a Potential Molecular Mechanism of Acquired Resistance to Combined BRAF/MEK Inhibition in CNS Multiple Myeloma

    No full text
    Central nervous system (CNS) involvement is an extremely rare extramedullary multiple myeloma (MM) manifestation, diagnosed in less than 1% of patients. It is considered an ultimate high-risk feature, associated with unfavorable cytogenetics, and, even with intense treatment applied, survival is short, reaching less than 12 months in most cases. In June 2017 an 81 years old male with a κ light chain MM was referred to our institution for an isolated CNS MM relapse. His cerebrospinal fluid (CSF) demonstrated a high load of clonal plasma cells, however, the patient's bone marrow infiltration was very little with a percentage of plasma cells less than 5%. Imaging, including gold standard MRI and experimental 11C-methionine PET scan, was performed, and high metabolic activity was detected supra- and infratentorially as well as in the right femur and the clivus. Following CD138+ cell purification we analyzed the specimen with M3P (v3.0) a disease specific in-house customized, next generation targeted sequencing panel for MM (Ion torrent platform). This includes most commonly mutated MM genes, actionable drug targets and drug resistance associated genes. The average sequencing depth increased 700X and spatial MM heterogeneity was detected, as the CFS cells harbored a clonal BRAFV600E mutation, absent in the bone marrow. Initial intrathecal and systemic chemotherapy with Cytarabine and Thiotepa was intolerable, thus the patient underwent a combined target inhibition with Dabrafenib/Trametinib, well known specific BRAF and a MEK 1/2 inhibitors. The patient displayed a rapid complete response (Figure. 1A), however, disease relapse occurred after three months of therapy. We obtained a sequential CFS sample and Whole Exome Sequencing (Illumina platform) was applied to pre and post therapy CFS sampling. Exome sequencing of the two time points performed an average sequencing depth of 115X; a total number of 97 non-silent coding variants (missense, nonsense, indels, splice) with an allele frequency higher than 5% were detected. In detail, 19 point mutations were acquired at relapse, including a subclonal missense mutation in CIC (p.A984P, VRF 17%), recently identified as a candidate gene contributing to MEK/BRAF resistance development. Next, we established a CIC knock-down model electroporating a specific anti-CIC siRNA into U266 MM cell line. We cultured the silenced and not-silenced cells with Trametinib and Dabrafenib, either as single agents, or in combination. As expected, we observed resistance induction to the combination of the two drugs (Row Factor 85.94%; P<0.0001, Two-way ANOVA) suggesting a critical role for this patient derived mutation for his MEK/BRAF resistance development (Figure 1C, D). In order to better clarify the landscape pathway related to CIC we analyzed expression data from 647 patients enrolled in the MMRF CoMMpass trial. Remarkably, we found a significant down-regulation of ERF and ETV6 (t-test -9.95, -9.93, P <0.001, respectively), two well characterized tumor suppressor genes correlated with the re-activation of the RAS downstream pathway (Figure 1B). This is the first report giving evidence for a potential role of point mutations in CIC as a resistance mechanism to targeted MEK/BRAF inhibition in BRAF mutated MM. The performed pathway analysis significantly extends the insights of the resistance mechanisms highlighted. Our results foster a statistically powered study to corroborate the clinical relevance
    corecore