17 research outputs found

    Polycyclic Aromatic Hydrocarbon Baselines in Gulf of Mexico Fishes

    No full text
    The lack of baseline data has hindered the assessment of impacts from large-scale oil spills throughout their history. Baseline data collected before an adverse event such as an oil spill are critical for quantifying impacts and understanding recovery rates to pre-spill levels. In the case of the two largest oil spills in the Gulf of Mexico (GoM), Deepwater Horizon and Ixtoc 1, the lack of comprehensive contaminant baselines limits our ability to project when the ecosystem will return to pre-spill conditions and assess the short- and long-term impacts of contamination on ecosystems. Beginning in 2011, we initiated comprehensive sampling in the GoM to develop broad-scale and Gulf-wide hydrocarbon contaminant baselines primarily targeting continental shelf fishes in the USA, Mexico, and Cuba. We also developed a time series of collections over 7 years from the region in which DWH occurred. In the event there is another oil spill in the GoM, the samples from these baselines will provide broad-scale but not installation-specific baseline information for the assessment of impact and recovery. This chapter provides a summary of historical sampling and current baseline data for pelagic, mesopelagic, and demersal fish in the GoM. Further, we outline the importance of ongoing and more specific collection of monitoring data for hydrocarbon pollution

    Effects of salinity acclimation on the expression and activity of Phase I enzymes (CYP450 and FMOs) in coho salmon (Oncorhynchus kisutch)

    No full text
    Phase I biotransformation enzymes are critically important in the disposition of xenobiotics within biota and are regulated by multiple environmental cues, particularly in anadromous fish species. Given the importance of these enzyme systems in xenobiotic/endogenous chemical bioactivation and detoxification, the current study was designed to better characterize the expression of Phase I biotransformation enzymes in coho salmon (Oncorhynchus kisutch) and the effects of salinity acclimation on those enzymes. Livers, gills and olfactory tissues were collected from coho salmon (Oncorhynchus kisutch) after they had undergone acclimation from freshwater to various salinity regimes of seawater (8, 16 and 32 g/L). Using immunoblot techniques coupled with testosterone hydroxylase catalytic activities, 4 orthologs of cytochrome P450 (CYP1A, CYP2K1, CYP2M1 and CYP3A27) were measured in each tissue. Also the expression of 2 transcripts of flavin-containing monooxygenases (FMO A and B) and associated activities were measured. With the exception of CYP1A, which was down-regulated in liver, protein expression of the other 3 enzymes was induced at higher salinity, with the greatest increase observed in CYP2M1 from olfactory tissues. In liver and gills, 6 - and 16 -hydroxylation of testosterone was also significantly increased after hypersaline acclimation. Similarly, FMO A was up-regulated in all 3 tissues in a salinity-dependent pattern, whereas FMO B mRNA was down-regulated. FMO-catalyzed benzydamine N-oxygenase and methyl p-tolyl sulfoxidation were significantly induced in liver and gills by hypersalinity, but was either unchanged or not detected in olfactory tissues. These data demonstrate thatenvironmental conditions may significantly alter the toxicity of environmental chemicals in salmon during freshwater/saltwater acclimation
    corecore