114 research outputs found

    Complete Genome Sequence of Mycoplasma suis and Insights into Its Biology and Adaption to an Erythrocyte Niche

    Get PDF
    Mycoplasma suis, the causative agent of porcine infectious anemia, has never been cultured in vitro and mechanisms by which it causes disease are poorly understood. Thus, the objective herein was to use whole genome sequencing and analysis of M. suis to define pathogenicity mechanisms and biochemical pathways. M. suis was harvested from the blood of an experimentally infected pig. Following DNA extraction and construction of a paired end library, whole-genome sequencing was performed using GS-FLX (454) and Titanium chemistry. Reads on paired-end constructs were assembled using GS De Novo Assembler and gaps closed by primer walking; assembly was validated by PFGE. Glimmer and Manatee Annotation Engine were used to predict and annotate protein-coding sequences (CDS). The M. suis genome consists of a single, 742,431 bp chromosome with low G+C content of 31.1%. A total of 844 CDS, 3 single copies, unlinked rRNA genes and 32 tRNAs were identified. Gene homologies and GC skew graph show that M. suis has a typical Mollicutes oriC. The predicted metabolic pathway is concise, showing evidence of adaptation to blood environment. M. suis is a glycolytic species, obtaining energy through sugars fermentation and ATP-synthase. The pentose-phosphate pathway, metabolism of cofactors and vitamins, pyruvate dehydrogenase and NAD+ kinase are missing. Thus, ribose, NADH, NADPH and coenzyme A are possibly essential for its growth. M. suis can generate purines from hypoxanthine, which is secreted by RBCs, and cytidine nucleotides from uracil. Toxins orthologs were not identified. We suggest that M. suis may cause disease by scavenging and competing for host' nutrients, leading to decreased life-span of RBCs. In summary, genome analysis shows that M. suis is dependent on host cell metabolism and this characteristic is likely to be linked to its pathogenicity. The prediction of essential nutrients will aid the development of in vitro cultivation systems

    The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery

    Get PDF
    The International Human Epigenome Consortium (IHEC) coordinates the generation of a catalog of high-resolution reference epigenomes of major primary human cell types. The studies now presented (see the Cell Press IHEC web portal at http://www.cell.com/consortium/IHEC) highlight the coordinated achievements of IHEC teams to gather and interpret comprehensive epigenomic datasets to gain insights in the epigenetic control of cell states relevant for human health and disease

    A case report of Mycoplasma wenyonii associated immune-mediated haemolytic anaemia in a dairy cow

    Get PDF
    Background and case presentation: A three year old, second lactation Holstein dairy cow presented to the Scottish Centre for Production Animal Health and Food Safety, Glasgow University Veterinary School in November 2014 with a history of post-calving vulval/vaginal bleeding nine days prior to presentation, followed by a sudden reduction in milk yield. Subsequent investigations resulted in a diagnosis of immune-mediated haemolytic anaemia secondary to infection with Mycoplasma wenyonii. Conclusion: This report of a novel presentation of Mycoplasma wenyonii in a dairy cow illustrates the need to consider M.wenyonii as a potential differential diagnosis when a cow presents with anaemia and will discuss the potential implications of the condition at herd-level
    corecore