15 research outputs found

    Canonical Wnt/beta-Catenin Signalling Is Essential for Optic Cup Formation

    Get PDF
    A multitude of signalling pathways are involved in the process of forming an eye. Here we demonstrate that beta-catenin is essential for eye development as inactivation of beta-catenin prior to cellular specification in the optic vesicle caused anophthalmia in mice. By achieving this early and tissue-specific beta-catenin inactivation we find that retinal pigment epithelium (RPE) commitment was blocked and eye development was arrested prior to optic cup formation due to a loss of canonical Wnt signalling in the dorsal optic vesicle. Thus, these results show that Wnt/beta-catenin signalling is required earlier and play a more central role in eye development than previous studies have indicated. In our genetic model system a few RPE cells could escape beta-catenin inactivation leading to the formation of a small optic rudiment. The optic rudiment contained several neural retinal cell classes surrounded by an RPE. Unlike the RPE cells, the neural retinal cells could be beta-catenin- negative revealing that differentiation of the neural retinal cell classes is beta-catenin-independent. Moreover, although dorsoventral patterning is initiated in the mutant optic vesicle, the neural retinal cells in the optic rudiment displayed almost exclusively ventral identity. Thus, beta-catenin is required for optic cup formation, commitment to RPE cells and maintenance of dorsal identity of the retina

    Implication of the miR-184 and miR-204 Competitive RNA Network in Control of Mouse Secondary Cataract

    Get PDF
    The high recurrence rate of secondary cataract (SC) is caused by the intrinsic differentiation activity of residual lens epithelial cells after extra-capsular lens removal. The objective of this study was to identify changes in the microRNA (miRNA) expression profile during mouse SC formation and to selectively manipulate miRNA expression for potential therapeutic intervention. To model SC, mouse cataract surgery was performed and temporal changes in the miRNA expression pattern were determined by microarray analysis. To study the potential SC counterregulative effect of miRNAs, a lens capsular bag in vitro model was used. Within the first 3 wks after cataract surgery, microarray analysis demonstrated SC-associated expression pattern changes of 55 miRNAs. Of the identified miRNAs, miR-184 and miR-204 were chosen for further investigations. Manipulation of miRNA expression by the miR-184 inhibitor (anti-miR-184) and the precursor miRNA for miR-204 (pre-miR-204) attenuated SC-associated expansion and migration of lens epithelial cells and signs of epithelial to mesenchymal transition such as α-smooth muscle actin expression. In addition, pre-miR-204 attenuated SC-associated expression of the transcription factor Meis homeobox 2 (MEIS2). Examination of miRNA target binding sites for miR-184 and miR-204 revealed an extensive range of predicted target mRNA sequences that were also a target to a complex network of other SC-associated miRNAs with possible opposing functions. The identification of the SC-specific miRNA expression pattern together with the observed in vitro attenuation of SC by anti-miR-184 and pre-miR-204 suggest that miR-184 and miR-204 play a significant role in the control of SC formation in mice that is most likely regulated by a complex competitive RNA network
    corecore