15 research outputs found

    Altered hepatobiliary disposition of acetaminophen glucuronide in isolated perfused livers from multidrug resistance-associated protein 2-deficient TR- rats

    No full text
    Previous studies have demonstrated that phenobarbital treatment impairs the biliary excretion of acetaminophen glucuronide (AG), although the transport system(s) responsible for AG excretion into bile has not been identified. Initial studies in rat canalicular liver plasma membrane vesicles indicated that AG uptake was stimulated modestly by ATP, but not by membrane potential, HCO3-, or pH gradients. To examine the role of the ATP-dependent canalicular transporter multidrug resistance-associated protein 2 (Mrp2)/canalicular multispecific organic anion transporter (cMOAT) in the biliary excretion of AG, the hepatobiliary disposition of acetaminophen, AG, and acetaminophen sulfate (AS) was examined in isolated perfused livers from control and TR- (Mrp2-deficient) Wistar rats. Mean bile flow in TR- livers was similar to0.3 mul/min/g of liver (similar to4-fold lower than control). AG biliary excretion was decreased (>300-fold) to negligible levels in TR- rat livers, indicating that AG is an Mrp2 substrate. Similarly, AS biliary excretion in TR- livers was decreased (similar to5-fold); however, concentrations were still measurable, suggesting that multiple mechanisms, including Mrp2-mediated active transport, may be involved in AS biliary excretion. AG and AS perfusate concentrations were significantly higher in livers from TR- compared with control rats. Pharmacokinetic modeling of the data revealed that the rate constant for basolateral egress of AG increased significantly from 0.028 to 0.206 min(-1), consistent with up-regulation of a basolateral organic anion transporter in Mrp2-deficient rat livers. In conclusion, these data indicate that AG biliary excretion is mediated by Mrp2, and clearly demonstrate that substrate disposition may be influenced by alterations in complementary transport systems in transport-deficient animals

    Phenobarbital alters hepatic Mrp2 function by direct and indirect interactions

    No full text
    Phenobarbital (PB) treatment impairs the biliary excretion of some organic anions. One mechanism may involve direct competition for biliary excretion by PB and/or a PB metabolite. Alternatively, PB may alter the expression and/or function of hepatic organic anion transport proteins. The role of multidrug resistance-associated protein 2 (Mrp2) in the biliary excretion of PB and metabolites was studied using isolated perfused livers (IPLs) from Wistar and Mrp2-deficient TR- rats. In normal livers, 4.19 +/- 0.53% of the PB dose was recovered in bile as PB metabolites [2.21 +/- 0.69% as 5-ethyl-5-(4-OH phenyl) barbituric acid (PBOH)-glucuronide; 1.98 +/- 0.09% as PBOH-sulfate]. In TR- livers, only PBOH-sulfate was recovered in bile (0.35 +/- 0.16% of dose) during the 2-h perfusion. Mrp2 message was increased (2.3-fold) by PB pretreatment (80 mg/kg i. p. x 4 days) but decreased to control values after a 48-h washout. Mrp2 protein was increased slightly in PB-treated livers and remained slightly elevated after a 24-h washout, but it was decreased significantly to 62 +/- 7% of control values after a 48-h washout. The 120-min cumulative biliary excretion of the Mrp2 substrate 5-(and-6)-carboxy- 2', 7'-dichlorofluorescein in IPLs from PB-treated rats after a 48-h washout was significantly lower than in vehicle-treated livers (66.3 +/- 9.2% versus 83.4 +/- 2.4% of the dose, respectively). These data support two mechanisms for impaired biliary excretion of some organic anions by PB treatment: 1) PBOH-glucuronide is a substrate for Mrp2 and may compete with other organic anions for biliary excretion and 2) Mrp2 protein expression and functional capacity is decreased 48 h after PB treatment

    Human Ontogeny of Drug Transporters: Review and Recommendations of the Pediatric Transporter Working Group

    No full text
    The critical importance of membrane-bound transporters in pharmacotherapy is widely recognized, but little is known about drug transporter activity in children. In this white paper, the Pediatric Transporter Working Group presents a systematic review of the ontogeny of clinically relevant membrane transporters (e.g., SLC, ABC superfamilies) in intestine, liver, and kidney. Different developmental patterns for individual transporters emerge, but much remains unknown. Recommendations to increase our understanding of membrane transporters in pediatric pharmacotherapy are presented

    Setup and use of HepaRG cells in cholestasis research

    No full text
    International audienceSince HepaRG cells can differentiate into well-polarized mature hepatocyte-like cells that synthesize, conjugate, and secrete bile acids, they represent an appropriate surrogate to primary human hepatocytes for investigations on drug-induced cholestasis mechanisms. In this chapter, culture conditions for obtaining HepaRG hepatocytes and the main methods used to detect cholestatic potential of drugs are described. Assays for evaluation of bile canaliculi dynamics and morphology are mainly based on time-lapse and phase-contrast microscopy analysis. Bile acid uptake, trafficking, and efflux are investigated using fluorescent probes. Individual bile acids are quantified in both culture media and cell layers by high-pressure liquid chromatography/tandem mass spectrometry. Preferential cellular accumulation of toxic hydrophobic bile acids is easily evidenced when exogenous primary and secondary bile acids are added to the culture medium. © Springer Science+Business Media, LLC, part of Springer Nature 2019
    corecore