1,155 research outputs found

    Multiphoton radiative recombination of electron assisted by laser field

    Get PDF
    In the presence of an intensive laser field the radiative recombination of the continuum electron into an atomic bound state generally is accompanied by absorption or emission of several laser quanta. The spectrum of emitted photons represents an equidistant pattern with the spacing equal to the laser frequency. The distribution of intensities in this spectrum is studied employing the Keldysh-type approximation, i.e. neglecting interaction of the impact electron with the atomic core in the initial continuum state. Within the adiabatic approximation the scale of emitted photon frequencies is subdivided into classically allowed and classically forbidden domains. The highest intensities correspond to emission frequencies close to the edges of classically allowed domain. The total cross section of electron recombination summed over all emitted photon channels exhibits negligible dependence on the laser field intensity.Comment: 14 pages, 5 figures (Figs.2-5 have "a" and "b" parts), Phys.Rev.A accepted for publication. Fig.2b is presented correctl

    Three Wide-Separation L dwarf Companions from the Two Micron All Sky Survey: Gl 337C, Gl 618.1B, and HD 89744B

    Get PDF
    We present two confirmed wide separation L-dwarf common proper motion companions to nearby stars and one candidate identified from the Two Micron All Sky Survey. Spectral types from optical spectroscopy are L0 V, L2.5 V, and L8 V. Near-infrared low resolution spectra of the companions are provided as well as a grid of known objects spanning M6 V -- T dwarfs to support spectral type assignment for these and future L-dwarfs in the z'JHK bands. Using published measurements, we estimate ages of the companions from physical properties of the primaries. These crude ages allow us to estimate companion masses using theoretical low-mass star and brown dwarf evolutionary models. The new L-dwarfs in this paper bring the number of known wide-binary (Separation >= 100 AU) L-dwarf companions of nearby stars to nine. One of the L-dwarfs is a wide separation companion to the F7 IV-V + extrasolar planet system HD89744Ab.Comment: 20 pages including 6 tables and 4 figures, AJ, in pres

    An Experimental Investigation of Colonel Blotto Games

    Get PDF
    "This article examines behavior in the two-player, constant-sum Colonel Blotto game with asymmetric resources in which players maximize the expected number of battlefields won. The experimental results support all major theoretical predictions. In the auction treatment, where winning a battlefield is deterministic, disadvantaged players use a 'guerilla warfare' strategy which stochastically allocates zero resources to a subset of battlefields. Advantaged players employ a 'stochastic complete coverage' strategy, allocating random, but positive, resource levels across the battlefields. In the lottery treatment, where winning a battlefield is probabilistic, both players divide their resources equally across all battlefields." (author's abstract)"Dieser Artikel untersucht das Verhalten von Individuen in einem 'constant-sum Colonel Blotto'-Spiel zwischen zwei Spielern, bei dem die Spieler mit unterschiedlichen Ressourcen ausgestattet sind und die erwartete Anzahl gewonnener Schlachtfelder maximieren. Die experimentellen Ergebnisse bestätigen alle wichtigen theoretischen Vorhersagen. Im Durchgang, in dem wie in einer Auktion der Sieg in einem Schlachtfeld deterministisch ist, wenden die Spieler, die sich im Nachteil befinden, eine 'Guerillataktik' an, und verteilen ihre Ressourcen stochastisch auf eine Teilmenge der Schlachtfelder. Spieler mit einem Vorteil verwenden eine Strategie der 'stochastischen vollständigen Abdeckung', indem sie zufällig eine positive Ressourcenmenge auf allen Schlachtfeldern positionieren. Im Durchgang, in dem sich der Gewinn eines Schlachtfeldes probabilistisch wie in einer Lotterie bestimmt, teilen beide Spieler ihre Ressourcen gleichmäßig auf alle Schlachtfelder auf." (Autorenreferat

    The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules

    Get PDF
    Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300-600 m/s in the lab frame, and for a large class of species has insufficient flux (i.e. brightness) for important applications. In contrast, buffer gas beams can be a superior method in many cases, producing cold and relatively slow molecules in the lab frame with high brightness and great versatility. There are basic differences between supersonic and buffer gas cooled beams regarding particular technological advantages and constraints. At present, it is clear that not all of the possible variations on the buffer gas method have been studied. In this review, we will present a survey of the current state of the art in buffer gas beams, and explore some of the possible future directions that these new methods might take

    Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions

    Full text link
    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts, a) electric charges present with all material particles, b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation and c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass, Einstein mass-energy relation, Newton's law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A specific solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200

    Why Every Economist Should Learn Some Auction Theory

    Full text link
    • …
    corecore