5 research outputs found

    Progress in Neutronics for the ITER ECRH Launcher

    No full text
    The paper reports the latest achievements in the neutronics modelling of the electron cyclotron resonance heating (ECRH) launcher installed in the ITER upper port. The computational neutronics analyses have been performed for the extended performance (EP) front steering launcher design, which is accepted by the ITER project as reference. The aim of the paper is to show that the considered launcher design satisfies to the nuclear criteria specified for ITER machine. Results of calculations for the essential nuclear responses such as the neutron fluxes, neutron damages, helium production, and nuclear heating are discussed. The methodology used is focused on Monte Carlo variance reduction techniques for deep-penetration neutron radiation calculations in a very heterogeneous geometry. The Monte Carlo N-particle (MCNP) code was used for the radiation transport calculations with a 3D geometry model of the launcher in ITER machine. The complexity of the launcher geometry makes inevitable to use an automated interface programme McCad for the direct conversion from CAD to MCNP. The results obtained are in compliance with the ITER nuclear regulations. The analyses reveal the necessity of detailed consideration of the most critical launcher components.JRC.F.4-Nuclear Reactor Integrity Assessment and Knowledge Managemen

    Neutronic Modeling Challenges for the ITER ECRH Launcher Shielding Design

    No full text
    Comprehensive neutronic analyses are being performed for different variants of the International Thermonuclear Experimental Reactor (ITER) electron cyclotron resonance heating upper launcher under development in the European Union making use of modern computation tools such as the McCad code for geometry conversion and the rigorous two-step (R2S) interface for rigorous shutdown dose rate calculation. There were many reasons for the challenges encountered during the shielding analyses: deep-penetrated radiation transport in the complex geometry of the launcher, frequent need to introduce changes in the three-dimensional MCNP model, and necessity to meet a broad range of nuclear sufficiency requirements specified for ITER. The challenges were successfully addressed and resulted in radiation shielding and nuclear safety support for the current version of the launcher design, which should be workable in ITER. During the process of the launcher design development, a comprehensive knowledge of neutronic characteristics has been gained, and computation methods were matured accordingly.JRC.DG.F.4-Safety of future nuclear reactor

    Radiation Shielding Analyses for the ITER Upper Port ECRH Launcher

    No full text
    The International Thermonuclear Experimental Reactor (ITER) will use an electron cyclotron resonance heating (ECRH) system in the upper port of the device for plasma stabilization, heating, and current drive by injecting millimeter wave beams into the plasma chamber. The millimeter waves are transmitted to the plasma through long and narrow waveguide channels. The required plasma wall openings could result in enhanced neutron radiation loadings to the ECRH launcher and neighboring reactor components. The analyses aimed at proving that the shielding requirements and all related nuclear design limits specified by ITER can be met for the proposed ECRH launcher design concepts. The nuclear criteria included human safety issues, nuclear waste regulation aspects, and radiation shielding requirements. The proof was conducted by calculating the radiation loads to sensitive components such as the diamond window of the ECRH launcher, the vacuum vessel, and the superconducting magnets and assessing the potential radiation doses to work personnel during shutdown periods. Dedicated computational approaches were developed to handle the related neutron streaming and shielding problems on the basis of threedimensional Monte Carlo calculations by the MCNP code. Suitable MCNP models of the launcher were generated by the automatic conversion of the underlying computer assisted design models using a newly developed interface program. The results of the analyses show that all radiation design limits can be safely met for the considered launcher and shield designs.JRC.F.4-Nuclear Reactor Integrity Assessment and Knowledge Managemen

    Analysis of the ITER ECH Upper Port Launcher remote maintenance using virtual reality

    No full text
    All ITER sub-systems of remote handling (RH) classes 1 and 2 have to be remotely maintainable. The maintenance strategy for these components has to ensure system availability after failure or scheduled maintenance. This paper shows how virtual reality (VR) simulation [1] can be used as a tool to analyze the maintenance process, to predict the mean time to repair and to ensure the RH compatibility of one ITER sub-system, the Upper Port Launcher (UPL) [2]. Special emphasis is put on the development of RH procedures and the identification of tooling requirements. The possibility to Simulate RH logistics and repair actions in an early stage of the design process allows for the identification of those maintenance actions that require dedicated tests in the Launcher Handling Test Facility at Karlsruhe. The VR analysis. together with dedicated mock-up tests will demonstrate the RH compatibility of the UPL plug, provide input to the design of the Port Plug maintenance area in the ITER Hot Cell, and support the development of RH maintenance tooling. (C) 2009 Published by Elsevier B.V

    Peroxisomes in the mouse parotid glands: An in-depth morphological and molecular analysis

    No full text
    Background: The parotid gland is a major salivary gland that has important roles in the digestive and immune system. Peroxisomes are ubiquitous, single-membrane-bound organelles that are present in all eukaryotic cells. Peroxisomes help mediate lipid and reactive oxygen species metabolism, as well as polyunsaturated fatty acid, cholesterol and plasmalogen synthesis. Much of the knowledge on peroxisomes has derived from metabolic organs, however no detailed knowledge is available on peroxisomes in the parotid glands. We thus aimed to comprehensively delineate the localization and characterization of peroxisomal proteins in the murine parotid gland. Methods: We characterized peroxisomes in the acinar and striated duct cells of the murine parotid gland by fluorescence and electron microscopy, as well as protein and mRNA expression analyses for important peroxisomal genes and proteins. Results: We found that peroxisomes are present in all cell types of the mouse parotid gland, however, exhibit notable cell-specific differences in their abundance and enzyme content. We also observed that mouse parotid glands contain high levels of peroxisomal beta-oxidation enzymes (including Acox1, Mfp2 and Acaa1), catalase and other peroxisomal anti-oxidative enzymes. Conclusions: This data suggests that peroxisomes are highly abundant in the murine parotid gland and might help to protect against oxidative stress. This comprehensive description of peroxisomes in the parotid gland lays the groundwork for further research concerning their role in the pathogenesis of parotid gland diseases and tumors. (C) 2021 Elsevier GmbH. All rights reserved
    corecore