939 research outputs found

    Terminology in Natural Family Planning Revisited

    Get PDF

    The Existential Isolation of Contraception

    Get PDF

    [Book Review of] \u3cem\u3eThe Mystery Hidden for Ages in God\u3c/em\u3e, by Paul M. Quay

    Get PDF

    Positive Woman or Negative Man?

    Get PDF

    Terminology and Core Curriculum in Natural Family Planning

    Get PDF

    Synthetic X-ray and radio maps for two different models of Stephan's Quintet

    Full text link
    We present simulations of the compact galaxy group Stephan's Quintet (SQ) including magnetic fields, performed with the N-body/smoothed particle hydrodynamics (SPH) code \textsc{Gadget}. The simulations include radiative cooling, star formation and supernova feedback. Magnetohydrodynamics (MHD) is implemented using the standard smoothed particle magnetohydrodynamics (SPMHD) method. We adapt two different initial models for SQ based on Renaud et al. and Hwang et al., both including four galaxies (NGC 7319, NGC 7320c, NGC 7318a and NGC 7318b). Additionally, the galaxies are embedded in a magnetized, low density intergalactic medium (IGM). The ambient IGM has an initial magnetic field of 10−910^{-9} G and the four progenitor discs have initial magnetic fields of 10−9−10−710^{-9} - 10^{-7} G. We investigate the morphology, regions of star formation, temperature, X-ray emission, magnetic field structure and radio emission within the two different SQ models. In general, the enhancement and propagation of the studied gaseous properties (temperature, X-ray emission, magnetic field strength and synchrotron intensity) is more efficient for the SQ model based on Renaud et al., whose galaxies are more massive, whereas the less massive SQ model based on Hwang et al. shows generally similar effects but with smaller efficiency. We show that the large shock found in observations of SQ is most likely the result of a collision of the galaxy NGC 7318b with the IGM. This large group-wide shock is clearly visible in the X-ray emission and synchrotron intensity within the simulations of both SQ models. The order of magnitude of the observed synchrotron emission within the shock front is slightly better reproduced by the SQ model based on Renaud et al., whereas the distribution and structure of the synchrotron emission is better reproduced by the SQ model based on Hwang et al..Comment: 20 pages, 15 figures, accepted to MNRA
    • …
    corecore