454 research outputs found

    How well do blood folate concentrations predict dietary folate intakes in a sample of Canadian lactating women exposed to high levels of folate? An observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 1998, mandatory folic acid fortification of white flour and select cereal grain products was implemented in Canada with the intention to increase dietary folate intakes of reproducing women. Folic acid fortification has produced a dramatic increase in blood folate concentrations among reproductive age women, and a reduction in neural tube defect (NTD)-affected pregnancies. In response to improved blood folate concentrations, many health care professionals are asking whether a folic acid supplement is necessary for NTD prevention among women with high blood folate values, and how reliably high RBC folate concentrations predict folate intakes shown in randomized controlled trials to be protective against NTDs. The objective of this study was to determine how predictive blood folate concentrations and folate intakes are of each other in a sample of well-educated lactating Canadian women exposed to high levels of synthetic folate.</p> <p>Methods</p> <p>The relationship between blood folate concentrations and dietary folate intakes, determined by weighed food records, were assessed in a sample of predominantly university-educated lactating women (32 Β± 4 yr) at 4-(n = 53) and 16-wk postpartum (n = 55).</p> <p>Results</p> <p>Median blood folate concentrations of all participants were well above plasma and RBC folate cut-off levels indicative of deficiency (6.7 and 317 nmol/L, respectively) and all, except for 2 subjects, were above the cut-off for NTD-risk reduction (>906 nmol/L). Only modest associations existed between total folate intakes and plasma (r = 0.46, <it>P </it>< 0.001) and RBC (r = 0.36, <it>P </it>< 0.01) folate concentrations at 16-wk postpartum. Plasma and RBC folate values at 16-wk postpartum correctly identified the quartile of folate intake of only 26 of 55 (47%) and 18 of 55 (33%) of subjects, respectively. The mean RBC folate concentration of women consuming 151–410 ΞΌg/d of synthetic folate (2<sup>nd </sup>quartile of intake) did not differ from that of women consuming >410 ΞΌg/d (3<sup>rd </sup>and 4<sup>th </sup>quartile).</p> <p>Conclusion</p> <p>Folate intakes, estimated by food composition tables, and blood folate concentrations are not predictive of each other in Canadian lactating women exposed to high levels of folate. Synthetic intakes > 151–410 ΞΌg/d in these women produced little additional benefit in terms of maximizing RBC content. More studies are needed to examine the relationship between blood folate concentration and NTD risk. Until data from such studies are available, women planning a pregnancy should continue to consume a daily folic acid supplement of 400 ΞΌg.</p

    Search for the standard model Higgs boson at LEP

    Get PDF

    Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism

    Get PDF
    Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at βˆ’0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units

    Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors

    Get PDF
    Introduction The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. Methods To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. Results Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. Conclusions Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena deficiency during development causes defects in invasive processes involved in mammary gland development. These findings suggest that functional intervention targeting Mena in breast cancer patients may provide a valuable treatment option to delay tumor progression and decrease invasion and metastatic spread leading to an improved prognostic outcome.National Cancer Institute (U.S.). Integrative Cancer Biology Program (grant U54 CA112967)Virginia and D.K. Ludwig Fund for Cancer Researc

    Cytoplasmic CUG RNA Foci Are Insufficient to Elicit Key DM1 Features

    Get PDF
    The genetic basis of myotonic dystrophy type I (DM1) is the expansion of a CTG tract located in the 3β€² untranslated region of DMPK. Expression of mutant RNAs encoding expanded CUG repeats plays a central role in the development of cardiac disease in DM1. Expanded CUG tracts form both nuclear and cytoplasmic aggregates, yet the relative significance of such aggregates in eliciting DM1 pathology is unclear. To test the pathophysiology of CUG repeat encoding RNAs, we developed and analyzed mice with cardiac-specific expression of a beta-galactosidase cassette in which a (CTG)400 repeat tract was positioned 3β€² of the termination codon and 5β€² of the bovine growth hormone polyadenylation signal. In these animals CUG aggregates form exclusively in the cytoplasm of cardiac cells. A key pathological consequence of expanded CUG repeat RNA expression in DM1 is aberrant RNA splicing. Abnormal splicing results from the functional inactivation of MBNL1, which is hypothesized to occur due to MBNL1 sequestration in CUG foci or from elevated levels of CUG-BP1. We therefore tested the ability of cytoplasmic CUG foci to elicit these changes. Aggregation of CUG RNAs within the cytoplasm results both in Mbnl1 sequestration and in approximately a two fold increase in both nuclear and cytoplasmic Cug-bp1 levels. Significantly, despite these changes RNA splice defects were not observed and functional analysis revealed only subtle cardiac dysfunction, characterized by conduction defects that primarily manifest under anesthesia. Using a human myoblast culture system we show that this transgene, when expressed at similar levels to a second transgene, which encodes expanded CTG tracts and facilitates both nuclear focus formation and aberrant splicing, does not elicit aberrant splicing. Thus the lack of toxicity of cytoplasmic CUG foci does not appear to be a consequence of low expression levels. Our results therefore demonstrate that the cellular location of CUG RNA aggregates is an important variable that influences toxicity and support the hypothesis that small molecules that increase the rate of transport of the mutant DMPK RNA from the nucleus into the cytoplasm may significantly improve DM1 pathology

    Stable Isotope Tracking of Endangered Sea Turtles: Validation with Satellite Telemetry and Ξ΄15N Analysis of Amino Acids

    Get PDF
    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in Ξ΄15N values of bulk skin, with distinct β€œlow Ξ΄15N” and β€œhigh Ξ΄15N” groups. Ξ΄15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin Ξ΄15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in light of this species’ imminent risk of extinction in the Pacific

    Role of Kinesin Heavy Chain in Crumbs Localization along the Rhabdomere Elongation in Drosophila Photoreceptor

    Get PDF
    BACKGROUND:Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the extension of the apical membrane domain, adherens junction (AJ), and rhabdomere along the growing proximal-distal axis during Drosophila photoreceptor morphogenesis. In developing Drosophila photoreceptors, a stabilized microtubule structure was discovered and its presence was linked to polarity protein localization. It was therefore hypothesized that the microtubules may provide trafficking routes for the polarity proteins during photoreceptor morphogenesis. This study has examined whether Kinesin heavy chain (Khc), a subunit of the microtubule-based motor Kinesin-1, is essential in polarity protein localization in developing photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS:Because a genetic interaction was found between crb and khc, Crb localization was examined in the developing photoreceptors of khc mutants. khc was dispensable during early eye differentiation and development. However, khc mutant photoreceptors showed a range of abnormalities in the apical membrane domain depending on the position along the proximal-distal axis in pupal photoreceptors. The khc mutant showed a progressive mislocalization in the apical domain along the distal-proximal axis during rhabdomere elongation. The khc mutation also led to a similar progressive defect in the stabilized microtubule structures, strongly suggesting that Khc is essential for microtubule structure and Crb localization during distal to proximal rhabdomere elongation in pupal morphogenesis. This role of Khc in apical domain control was further supported by khc's gain-of-function phenotype. Khc overexpression in photoreceptors caused disruption of the apical membrane domain and the stabilized microtubules in the developing photoreceptors. CONCLUSIONS/SIGNIFICANCE:In summary, we examined the role of khc in the regulation of the apical Crb domain in developing photoreceptors. Since the rhabdomeres in developing pupal eyes grow along the distal-proximal axis, these phenotypes suggest that Khc is essential for the microtubule structures and apical membrane domains during the distal-proximal elongation of photoreceptors, but is dispensable for early eye development

    Sparse Representation of Brain Aging: Extracting Covariance Patterns from Structural MRI

    Get PDF
    An enhanced understanding of how normal aging alters brain structure is urgently needed for the early diagnosis and treatment of age-related mental diseases. Structural magnetic resonance imaging (MRI) is a reliable technique used to detect age-related changes in the human brain. Currently, multivariate pattern analysis (MVPA) enables the exploration of subtle and distributed changes of data obtained from structural MRI images. In this study, a new MVPA approach based on sparse representation has been employed to investigate the anatomical covariance patterns of normal aging. Two groups of participants (group 1∢290 participants; group 2∢56 participants) were evaluated in this study. These two groups were scanned with two 1.5 T MRI machines. In the first group, we obtained the discriminative patterns using a t-test filter and sparse representation step. We were able to distinguish the young from old cohort with a very high accuracy using only a few voxels of the discriminative patterns (group 1∢98.4%; group 2∢96.4%). The experimental results showed that the selected voxels may be categorized into two components according to the two steps in the proposed method. The first component focuses on the precentral and postcentral gyri, and the caudate nucleus, which play an important role in sensorimotor tasks. The strongest volume reduction with age was observed in these clusters. The second component is mainly distributed over the cerebellum, thalamus, and right inferior frontal gyrus. These regions are not only critical nodes of the sensorimotor circuitry but also the cognitive circuitry although their volume shows a relative resilience against aging. Considering the voxels selection procedure, we suggest that the aging of the sensorimotor and cognitive brain regions identified in this study has a covarying relationship with each other
    • …
    corecore