144 research outputs found

    ZNF93 Increases Resistance to ET-743 (Trabectedin; Yondelis®) and PM00104 (Zalypsis®) in Human Cancer Cell Lines

    Get PDF
    ET-743 (trabectedin, Yondelis) and PM00104 (Zalypsis) are marine derived compounds that have antitumor activity. ET-743 and PM00104 exposure over sustained periods of treatment will result in the development of drug resistance, but the mechanisms which lead to resistance are not yet understood.Human chondrosarcoma cell lines resistant to ET-743 (CS-1/ER) or PM00104 (CS-1/PR) were established in this study. The CS-1/ER and CS-1/PR exhibited cross resistance to cisplatin and methotrexate but not to doxorubicin. Human Affymetrix Gene Chip arrays were used to examine relative gene expression in these cell lines. We found that a large number of genes have altered expression levels in CS-1/ER and CS-1/PR when compared to the parental cell line. 595 CS-1/ER and 498 CS-1/PR genes were identified as overexpressing; 856 CS-1/ER and 874 CS-1/PR transcripts were identified as underexpressing. Three zinc finger protein (ZNF) genes were on the top 10 overexpressed genes list. These genes have not been previously associated with drug resistance in tumor cells. Differential expressions of ZNF93 and ZNF43 genes were confirmed in both CS-1/ER and CS-1/PR resistant cell lines by real-time RT-PCR. ZNF93 was overexpressed in two ET-743 resistant Ewing sarcoma cell lines as well as in a cisplatin resistant ovarian cancer cell line, but was not overexpressed in paclitaxel resistant cell lines. ZNF93 knockdown by siRNA in CS-1/ER and CS-1/PR caused increased sensitivity for ET-743, PM00104, and cisplatin. Furthermore, ZNF93 transfected CS-1 cells are relatively resistant to ET-743, PM00104 and cisplatin.This study suggests that zinc finger proteins, and ZNF93 in particular, are involved in resistance to ET-743 and PM00104

    Hepatopathy following consumption of a commercially available blue-green algae dietary supplement in a dog

    Get PDF
    BACKGROUND: Dietary supplement use in both human and animals to augment overall health continues to increase and represents a potential health risk due to the lack of safety regulations imposed on the manufacturers. Because there are no requirements for demonstrating safety and efficacy prior to marketing, dietary supplements may contain potentially toxic contaminants such as hepatotoxic microcystins produced by several species of blue-green algae. CASE PRESENTATION: An 11-year-old female spayed 8.95 kg Pug dog was initially presented for poor appetite, lethargy polyuria, polydipsia, and an inability to get comfortable. Markedly increased liver enzyme activities were detected with no corresponding abnormalities evident on abdominal ultrasound. A few days later the liver enzyme activities were persistently increased and the dog was coagulopathic indicating substantial liver dysfunction. The dog was hospitalized for further care consisting of oral S-adenosylmethionine, silybin, vitamin K, and ursodeoxycholic acid, as well as intravenous ampicillin sodium/sulbactam sodium, dolasetron, N-acetylcysteine, metoclopramide, and intravenous fluids. Improvement of the hepatopathy and the dog’s clinical status was noted over the next three days. Assessment of the dog’s diet revealed the use of a commercially available blue-green algae dietary supplement for three-and-a-half weeks prior to hospitalization. The supplement was submitted for toxicology testing and revealed the presence of hepatotoxic microcystins (MCs), MC-LR and MC-LA. Use of the supplement was discontinued and follow-up evaluation over the next few weeks revealed a complete resolution of the hepatopathy. CONCLUSIONS: To the authors’ knowledge, this is the first case report of microcystin intoxication in a dog after using a commercially available blue-green algae dietary supplement. Veterinarians should recognize the potential harm that these supplements may cause and know that with intervention, recovery is possible. In addition, more prudent oversight of dietary supplement use is recommended for our companion animals to prevent adverse events/intoxications

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore