267 research outputs found

    Improving Risk Adjustment for Mortality After Pediatric Cardiac Surgery: The UK PRAiS2 Model

    Get PDF
    BACKGROUND: Partial Risk Adjustment in Surgery (PRAiS), a risk model for 30-day mortality after children's heart surgery, has been used by the UK National Congenital Heart Disease Audit to report expected risk-adjusted survival since 2013. This study aimed to improve the model by incorporating additional comorbidity and diagnostic information. METHODS: The model development dataset was all procedures performed between 2009 and 2014 in all UK and Ireland congenital cardiac centers. The outcome measure was death within each 30-day surgical episode. Model development followed an iterative process of clinical discussion and development and assessment of models using logistic regression under 25 × 5 cross-validation. Performance was measured using Akaike information criterion, the area under the receiver-operating characteristic curve (AUC), and calibration. The final model was assessed in an external 2014 to 2015 validation dataset. RESULTS: The development dataset comprised 21,838 30-day surgical episodes, with 539 deaths (mortality, 2.5%). The validation dataset comprised 4,207 episodes, with 97 deaths (mortality, 2.3%). The updated risk model included 15 procedural, 11 diagnostic, and 4 comorbidity groupings, and nonlinear functions of age and weight. Performance under cross-validation was: median AUC of 0.83 (range, 0.82 to 0.83), median calibration slope and intercept of 0.92 (range, 0.64 to 1.25) and -0.23 (range, -1.08 to 0.85) respectively. In the validation dataset, the AUC was 0.86 (95% confidence interval [CI], 0.82 to 0.89), and the calibration slope and intercept were 1.01 (95% CI, 0.83 to 1.18) and 0.11 (95% CI, -0.45 to 0.67), respectively, showing excellent performance. CONCLUSIONS: A more sophisticated PRAiS2 risk model for UK use was developed with additional comorbidity and diagnostic information, alongside age and weight as nonlinear variables

    Locomotor hyperactivity in 14-3-3Zeta KO mice is associated with dopamine transporter dysfunction

    Get PDF
    Dopamine (DA) neurotransmission requires a complex series of enzymatic reactions that are tightly linked to catecholamine exocytosis and receptor interactions on pre- and postsynaptic neurons. Regulation of dopaminergic signalling is primarily achieved through reuptake of extracellular DA by the DA transporter (DAT) on presynaptic neurons. Aberrant regulation of DA signalling, and in particular hyperactivation, has been proposed as a key insult in the presentation of schizophrenia and related neuropsychiatric disorders. We recently identified 14-3-3ζ as an essential component of neurodevelopment and a central risk factor in the schizophrenia protein interaction network. Our analysis of 14-3-3ζ-deficient mice now shows that baseline hyperactivity of knockout (KO) mice is rescued by the antipsychotic drug clozapine. 14-3-3ζ KO mice displayed enhanced locomotor hyperactivity induced by the DA releaser amphetamine. Consistent with 14-3-3ζ having a role in DA signalling, we found increased levels of DA in the striatum of 14-3-3ζ KO mice. Although 14-3-3ζ is proposed to modulate activity of the rate-limiting DA biosynthesis enzyme, tyrosine hydroxylase (TH), we were unable to identify any differences in total TH levels, TH localization or TH activation in 14-3-3ζ KO mice. Rather, our analysis identified significantly reduced levels of DAT in the absence of notable differences in RNA or protein levels of DA receptors D1–D5. Providing insight into the mechanisms by which 14-3-3ζ controls DAT stability, we found a physical association between 14-3-3ζ and DAT by co-immunoprecipitation. Taken together, our results identify a novel role for 14-3-3ζ in DA neurotransmission and provide support to the hyperdopaminergic basis of pathologies associated with schizophrenia and related disorders.H Ramshaw, X Xu, EJ Jaehne, P McCarthy, Z Greenberg, E Saleh, B McClure, J Woodcock, S Kabbara, S Wiszniak, Ting-Yi Wang, C Parish, M van den Buuse, BT Baune, A Lopez and Q Schwar

    Antimicrobial activity of two South African honeys produced from indigenous Leucospermum cordifolium and Erica species on selected micro-organisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Honey has been shown to have wound healing properties which can be ascribed to its antimicrobial activity. The antimicrobial activity can be effective against a broad spectrum of bacterial species especially those of medical importance. It has also been shown that there is considerable variation in the antimicrobial potency of different types of honey, which is impossible to predict. With this in mind we tested the antimicrobial activity of honeys produced from plants grown in South Africa for their antibacterial properties on selected standard strains of oral micro-organisms.</p> <p>Methods</p> <p>The honeys used were produced from the blossoms of <it>Eucalyptus cladocalyx </it>(Bluegum) trees, an indigenous South African plant <it>Leucospermum cordifolium </it>(Pincushion), a mixture of wild heather shrubs, mainly <it>Erica </it>species (Fynbos) and a <it>Leptospermum scoparium </it>(Manuka) honey. Only pure honey which had not been heated was used. The honeys were tested for their antimicrobial properties with a broth dilution method.</p> <p>Results</p> <p>Although the honeys produced some inhibitory effect on the growth of the micro-organisms, no exceptionally high activity occurred in the South African honeys. The carbohydrate concentration plays a key role in the antimicrobial activity of the honeys above 25%. However, these honeys do contain other antimicrobial properties that are effective against certain bacterial species at concentrations well below the hypertonic sugar concentration. The yeast <it>C. albicans </it>was more resistant to the honeys than the bacteria. The species <it>S. anginosus </it>and <it>S. oralis </it>were more sensitive to the honeys than the other test bacteria.</p> <p>Conclusion</p> <p>The honeys produced from indigenous wild flowers from South Africa had no exceptionally high activity that could afford medical grade status.</p

    Management of hepatic epithelioid haemangio-endothelioma in children: what option?

    Get PDF
    Hepatic epithelioid haemangio-endothelioma (HEHE) is an endothelium-derived tumour of low-to-medium grade malignancy. It is predominantly seen in adults and is unresponsive to chemotherapy. Liver transplantation is an accepted indication when the tumour is unresectable. Hepatic epithelioid haemangio-endothelioma is very rare in children and results after transplantation are not reported. The aim of this study is to review the experience of three European centres in the management of HEHE in children. A retrospective review of all paediatric patients with HEHE managed in three European centres is presented. Five children were identified. Four had unresectable tumours. The first had successful resection followed by chemotherapy and is alive, without disease 3 years after diagnosis. One child died of sepsis and one of tumour recurrence in the graft and lungs 2 and 5 months, respectively, after transplant. Two children who had progressive disease with ifosfamide-based chemotherapy have had a reduction in clinical symptoms and stabilisation of disease up to 18 and 24 months after the use of platinum-based chemotherapy. HEHE seems more aggressive in children than reported in adults and the curative role of transplantation must be questioned. Ifosfamide-based chemotherapy was not effective. Further studies are necessary to confirm if HEHE progression in children may be influenced by platinum-based chemotherapy

    Calibrative approaches to protein solubility modeling of a mutant series using physicochemical descriptors

    Get PDF
    A set of physicochemical properties describing a protein of known structure is employed for a calibrative approach to protein solubility. Common hydrodynamic and electrophoretic properties routinely measured in the bio-analytical laboratory such as zeta potential, dipole moment, the second osmotic virial coefficient are first estimated in silico as a function a pH and solution ionic strength starting with the protein crystal structure. The utility of these descriptors in understanding the solubility of a series of ribonuclease Sa mutants is investigated. A simple two parameter model was trained using solubility data of the wild type protein measured at a restricted number of solution pHs. Solubility estimates of the mutants demonstrate that zeta potential and dipole moment may be used to rationalize solubility trends over a wide pH range. Additionally a calibrative model based on the protein’s second osmotic virial coefficient, B22 was developed. A modified DVLO type potential along with a simplified representation of the protein allowed for efficient computation of the second viral coefficient. The standard error of prediction for both models was on the order of 0.3 log S units. These results are very encouraging and demonstrate that these models may be trained with a small number of samples and employed extrapolatively for estimating mutant solubilities

    Investigating the robustness of the classical enzyme kinetic equations in small intracellular compartments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Classical descriptions of enzyme kinetics ignore the physical nature of the intracellular environment. Main implicit assumptions behind such approaches are that reactions occur in compartment volumes which are large enough so that molecular discreteness can be ignored and that molecular transport occurs via diffusion. Though these conditions are frequently met in laboratory conditions, they are not characteristic of the intracellular environment, which is compartmentalized at the micron and submicron scales and in which active means of transport play a significant role.</p> <p>Results</p> <p>Starting from a master equation description of enzyme reaction kinetics and assuming metabolic steady-state conditions, we derive novel mesoscopic rate equations which take into account (i) the intrinsic molecular noise due to the low copy number of molecules in intracellular compartments (ii) the physical nature of the substrate transport process, i.e. diffusion or vesicle-mediated transport. These equations replace the conventional macroscopic and deterministic equations in the context of intracellular kinetics. The latter are recovered in the limit of infinite compartment volumes. We find that deviations from the predictions of classical kinetics are pronounced (hundreds of percent in the estimate for the reaction velocity) for enzyme reactions occurring in compartments which are smaller than approximately 200 nm, for the case of substrate transport to the compartment being mediated principally by vesicle or granule transport and in the presence of competitive enzyme inhibitors.</p> <p>Conclusion</p> <p>The derived mesoscopic rate equations describe subcellular enzyme reaction kinetics, taking into account, for the first time, the simultaneous influence of both intrinsic noise and the mode of transport. They clearly show the range of applicability of the conventional deterministic equation models, namely intracellular conditions compatible with diffusive transport and simple enzyme mechanisms in several hundred nanometre-sized compartments. An active transport mechanism coupled with large intrinsic noise in enzyme concentrations is shown to lead to huge deviations from the predictions of deterministic models. This has implications for the common approach of modeling large intracellular reaction networks using ordinary differential equations and also for the calculation of the effective dosage of competitive inhibitor drugs.</p

    Interpersonal violence: an important risk factor for disease and injury in South Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Burden of disease estimates for South Africa have highlighted the particularly high rates of injuries related to interpersonal violence compared with other regions of the world, but these figures tell only part of the story. In addition to direct physical injury, violence survivors are at an increased risk of a wide range of psychological and behavioral problems. This study aimed to comprehensively quantify the excess disease burden attributable to exposure to interpersonal violence as a risk factor for disease and injury in South Africa.</p> <p>Methods</p> <p>The World Health Organization framework of interpersonal violence was adapted. Physical injury mortality and disability were categorically attributed to interpersonal violence. In addition, exposure to child sexual abuse and intimate partner violence, subcategories of interpersonal violence, were treated as risk factors for disease and injury using counterfactual estimation and comparative risk assessment methods. Adjustments were made to account for the combined exposure state of having experienced both child sexual abuse and intimate partner violence.</p> <p>Results</p> <p>Of the 17 risk factors included in the South African Comparative Risk Assessment study, interpersonal violence was the second leading cause of healthy years of life lost, after unsafe sex, accounting for 1.7 million disability-adjusted life years (DALYs) or 10.5% of all DALYs (95% uncertainty interval: 8.5%-12.5%) in 2000. In women, intimate partner violence accounted for 50% and child sexual abuse for 32% of the total attributable DALYs.</p> <p>Conclusions</p> <p>The implications of our findings are that estimates that include only the direct injury burden seriously underrepresent the full health impact of interpersonal violence. Violence is an important direct and indirect cause of health loss and should be recognized as a priority health problem as well as a human rights and social issue. This study highlights the difficulties in measuring the disease burden from interpersonal violence as a risk factor and the need to improve the epidemiological data on the prevalence and risks for the different forms of interpersonal violence to complete the picture. Given the extent of the burden, it is essential that innovative research be supported to identify social policy and other interventions that address both the individual and societal aspects of violence.</p

    Ca2+ Permeable AMPA Receptor Induced Long-Term Potentiation Requires PI3/MAP Kinases but Not Ca/CaM-Dependent Kinase II

    Get PDF
    Ca2+ influx via GluR2-lacking Ca2+-permeable AMPA glutamate receptors (CP-AMPARs) can trigger changes in synaptic efficacy in both interneurons and principle neurons, but the underlying mechanisms remain unknown. We took advantage of genetically altered mice with no or reduced GluR2, thus allowing the expression of synaptic CP-AMPARs, to investigate the molecular signaling process during CP-AMPAR-induced synaptic plasticity at CA1 synapses in the hippocampus. Utilizing electrophysiological techniques, we demonstrated that these receptors were capable of inducing numerous forms of long-term potentiation (referred to as CP-AMPAR dependent LTP) through a number of different induction protocols, including high-frequency stimulation (HFS) and theta-burst stimulation (TBS). This included a previously undemonstrated form of protein-synthesis dependent late-LTP (L-LTP) at CA1 synapses that is NMDA-receptor independent. This form of plasticity was completely blocked by the selective CP-AMPAR inhibitor IEM-1460, and found to be dependent on postsynaptic Ca2+ ions through calcium chelator (BAPTA) studies. Surprisingly, Ca/CaM-dependent kinase II (CaMKII), the key protein kinase that is indispensable for NMDA-receptor dependent LTP at CA1 synapses appeared to be not required for the induction of CP-AMPAR dependent LTP due to the lack of effect of two separate pharmacological inhibitors (KN-62 and staurosporine) on this form of potentiation. Both KN-62 and staurosporine strongly inhibited NMDA-receptor dependent LTP in control studies. In contrast, inhibitors for PI3-kinase (LY294002 and wortmannin) or the MAPK cascade (PD98059 and U0126) significantly attenuated this CP-AMPAR-dependent LTP. Similarly, postsynaptic infusion of tetanus toxin (TeTx) light chain, an inhibitor of exocytosis, also had a significant inhibitory effect on this form of LTP. These results suggest that distinct synaptic signaling underlies GluR2-lacking CP-AMPAR-dependent LTP, and reinforces the recent notions that CP-AMPARs are important facilitators of synaptic plasticity in the brain
    corecore