188 research outputs found

    Timing is everything: the regulation of type III secretion

    Get PDF
    Type Three Secretion Systems (T3SSs) are essential virulence determinants of many Gram-negative bacteria. The T3SS is an injection device that can transfer bacterial virulence proteins directly into host cells. The apparatus is made up of a basal body that spans both bacterial membranes and an extracellular needle that possesses a channel that is thought to act as a conduit for protein secretion. Contact with a host-cell membrane triggers the insertion of a pore into the target membrane, and effectors are translocated through this pore into the host cell. To assemble a functional T3SS, specific substrates must be targeted to the apparatus in the correct order. Recently, there have been many developments in our structural and functional understanding of the proteins involved in the regulation of secretion. Here we review the current understanding of protein components of the system thought to be involved in switching between different stages of secretion

    Autoantibody Epitope Spreading in the Pre-Clinical Phase Predicts Progression to Rheumatoid Arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a prototypical autoimmune arthritis affecting nearly 1% of the world population and is a significant cause of worldwide disability. Though prior studies have demonstrated the appearance of RA-related autoantibodies years before the onset of clinical RA, the pattern of immunologic events preceding the development of RA remains unclear. To characterize the evolution of the autoantibody response in the preclinical phase of RA, we used a novel multiplex autoantigen array to evaluate development of the anti-citrullinated protein antibodies (ACPA) and to determine if epitope spread correlates with rise in serum cytokines and imminent onset of clinical RA. To do so, we utilized a cohort of 81 patients with clinical RA for whom stored serum was available from 1–12 years prior to disease onset. We evaluated the accumulation of ACPA subtypes over time and correlated this accumulation with elevations in serum cytokines. We then used logistic regression to identify a profile of biomarkers which predicts the imminent onset of clinical RA (defined as within 2 years of testing). We observed a time-dependent expansion of ACPA specificity with the number of ACPA subtypes. At the earliest timepoints, we found autoantibodies targeting several innate immune ligands including citrullinated histones, fibrinogen, and biglycan, thus providing insights into the earliest autoantigen targets and potential mechanisms underlying the onset and development of autoimmunity in RA. Additionally, expansion of the ACPA response strongly predicted elevations in many inflammatory cytokines including TNF-α, IL-6, IL-12p70, and IFN-γ. Thus, we observe that the preclinical phase of RA is characterized by an accumulation of multiple autoantibody specificities reflecting the process of epitope spread. Epitope expansion is closely correlated with the appearance of preclinical inflammation, and we identify a biomarker profile including autoantibodies and cytokines which predicts the imminent onset of clinical arthritis

    Identifying Cognate Binding Pairs among a Large Set of Paralogs: The Case of PE/PPE Proteins of Mycobacterium tuberculosis

    Get PDF
    We consider the problem of how to detect cognate pairs of proteins that bind when each belongs to a large family of paralogs. To illustrate the problem, we have undertaken a genomewide analysis of interactions of members of the PE and PPE protein families of Mycobacterium tuberculosis. Our computational method uses structural information, operon organization, and protein coevolution to infer the interaction of PE and PPE proteins. Some 289 PE/PPE complexes were predicted out of a possible 5,590 PE/PPE pairs genomewide. Thirty-five of these predicted complexes were also found to have correlated mRNA expression, providing additional evidence for these interactions. We show that our method is applicable to other protein families, by analyzing interactions of the Esx family of proteins. Our resulting set of predictions is a starting point for genomewide experimental interaction screens of the PE and PPE families, and our method may be generally useful for detecting interactions of proteins within families having many paralogs

    The pharmacokinetics of the interstitial space in humans

    Get PDF
    BACKGROUND: The pharmacokinetics of extracellular solutes is determined by the blood-tissue exchange kinetics and the volume of distribution in the interstitial space in the different organs. This information can be used to develop a general physiologically based pharmacokinetic (PBPK) model applicable to most extracellular solutes. METHODS: The human pharmacokinetic literature was surveyed to tabulate the steady state and equilibrium volume of distribution of the solutes mannitol, EDTA, morphine-6-glucuronide, morphine-3-glucuronide, inulin and β-lactam antibiotics with a range of protein binding (amoxicillin, piperacillin, cefatrizine, ceforanide, flucloxacillin, dicloxacillin). A PBPK data set was developed for extracellular solutes based on the literature for interstitial organ volumes. The program PKQuest was used to generate the PBPK model predictions. The pharmacokinetics of the protein (albumin) bound β-lactam antibiotics were characterized by two parameters: 1) the free fraction of the solute in plasma; 2) the interstitial albumin concentration. A new approach to estimating the capillary permeability is described, based on the pharmacokinetics of the highly protein bound antibiotics. RESULTS: About 42% of the total body water is extracellular. There is a large variation in the organ distribution of this water – varying from about 13% of total tissue water for skeletal muscle, up to 70% for skin and connective tissue. The weakly bound antibiotics have flow limited capillary-tissue exchange kinetics. The highly protein bound antibiotics have a significant capillary permeability limitation. The experimental pharmacokinetics of the 11 solutes is well described using the new PBPK data set and PKQuest. CONCLUSIONS: Only one adjustable parameter (systemic clearance) is required to completely characterize the PBPK for these extracellular solutes. Knowledge of just this systemic clearance allows one to predict the complete time course of the absolute drug concentrations in the major organs. PKQuest is freely available

    Modified Needle-Tip PcrV Proteins Reveal Distinct Phenotypes Relevant to the Control of Type III Secretion and Intoxication by Pseudomonas aeruginosa

    Get PDF
    The type III secretion system (T3SS) is employed to deliver effector proteins to the cytosol of eukaryotic hosts by multiple species of Gram-negative bacteria, including Pseudomonas aeruginosa. Translocation of effectors is dependent on the proteins encoded by the pcrGVHpopBD operon. These proteins form a T3S translocator complex, composed of a needle-tip complex (PcrV), translocons (PopB and PopD), and chaperones (PcrG and PcrH). PcrV mediates the folding and insertion of PopB/PopD in host plasmic membranes, where assembled translocons form a translocation channel. Assembly of this complex and delivery of effectors through this machinery is tightly controlled by PcrV, yet the multifunctional aspects of this molecule have not been defined. In addition, PcrV is a protective antigen for P. aeruginosa infection as is the ortholog, LcrV, for Yersinia. We constructed PcrV derivatives containing in-frame linker insertions and site-specific mutations. The expression of these derivatives was regulated by a T3S-specific promoter in a pcrV-null mutant of PA103. Nine derivatives disrupted the regulation of effector secretion and constitutively released an effector protein into growth medium. Three of these regulatory mutants, in which the linker was inserted in the N-terminal globular domain, were competent for the translocation of a cytotoxin, ExoU, into eukaryotic host cells. We also isolated strains expressing a delayed-toxicity phenotype, which secrete translocators slowly despite the normal level of effector secretion. Most of the cytotoxic translocation-competent strains retained the protective epitope of PcrV derivatives, and Mab166 was able to protect erythrocytes during infection with these strains. The use of defined PcrV derivatives possessing distinct phenotypes may lead to a better understanding of the functional aspects of T3 needle-tip proteins and the development of therapeutic agents or vaccines targeting T3SS-mediated intoxication

    Zebrafish: a vertebrate tool for studying basal body biogenesis, structure, and function.

    Get PDF
    Understanding the role of basal bodies (BBs) during development and disease has been largely overshadowed by research into the function of the cilium. Although these two organelles are closely associated, they have specific roles to complete for successful cellular development. Appropriate development and function of the BB are fundamental for cilia function. Indeed, there are a growing number of human genetic diseases affecting ciliary development, known collectively as the ciliopathies. Accumulating evidence suggests that BBs establish cell polarity, direct ciliogenesis, and provide docking sites for proteins required within the ciliary axoneme. Major contributions to our knowledge of BB structure and function have been provided by studies in flagellated or ciliated unicellular eukaryotic organisms, specifically Tetrahymena and Chlamydomonas. Reproducing these and other findings in vertebrates has required animal in vivo models. Zebrafish have fast become one of the primary organisms of choice for modeling vertebrate functional genetics. Rapid ex-utero development, proficient egg laying, ease of genetic manipulation, and affordability make zebrafish an attractive vertebrate research tool. Furthermore, zebrafish share over 80 % of disease causing genes with humans. In this article, we discuss the merits of using zebrafish to study BB functional genetics, review current knowledge of zebrafish BB ultrastructure and mechanisms of function, and consider the outlook for future zebrafish-based BB studies

    Analysis of the Expression, Secretion and Translocation of the Salmonella enterica Type III Secretion System Effector SteA

    Get PDF
    Many Gram-negative pathogens possess virulence-related type III secretion systems. Salmonella enterica uses two of these systems, encoded on the pathogenicity islands SPI-1 and SPI-2, respectively, to translocate more than 30 effector proteins into eukaryotic host cells. SteA is one of the few effectors that can be translocated by both systems. We investigated the conditions affecting the synthesis of this effector, its secretion to culture media and its translocation into host cells. Whereas steA was expressed under a wide range of conditions, some factors, including low and high osmolarity, and presence of butyrate, decreased expression. SteA was efficiently secreted to the culture media under both SPI-1 and SPI-2 inducing conditions. The kinetics of translocation into murine macrophages and human epithelial cells was studied using fusions with the 3xFLAG tag, and fusions with CyaA from Bordetella pertussis. Translocation into macrophages under non-invasive conditions was mainly dependent on the SPI-2-encoded type III secretion system but some participation of the SPI-1 system was also detected 6 hours post-infection. Interestingly, both type III secretion systems had a relevant role in the translocation of SteA into epithelial cells. Finally, a deletion approach allowed the identification of the N-terminal signal necessary for translocation of this effector. The amino acid residues 1–10 were sufficient to direct translocation into host cells through both type III secretion systems. Our results provide new examples of functional overlapping between the two type III secretion systems of Salmonella

    Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions

    Get PDF
    Monkeypox virus (MPV) is a zoonotic Orthopoxvirus and a potential biothreat agent that causes human disease with varying morbidity and mortality. Members of the Orthopoxvirus genus have been shown to suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes and virus-targeted host networks during infection is lacking. To better understand viral strategies adopted in manipulating routine host biology on global scale, we investigated the effect of MPV infection on Macaca mulatta kidney epithelial cells (MK2) using GeneChip rhesus macaque genome microarrays. Functional analysis of genes differentially expressed at 3 and 7 hours post infection showed distinctive regulation of canonical pathways and networks. While the majority of modulated histone-encoding genes exhibited sharp copy number increases, many of its transcription regulators were substantially suppressed; suggesting involvement of unknown viral factors in host histone expression. In agreement with known viral dependence on actin in motility, egress, and infection of adjacent cells, our results showed extensive regulation of genes usually involved in controlling actin expression dynamics. Similarly, a substantial ratio of genes contributing to cell cycle checkpoints exhibited concerted regulation that favors cell cycle progression in G1, S, G2 phases, but arrest cells in G2 phase and inhibits entry into mitosis. Moreover, the data showed that large number of infection-regulated genes is involved in molecular mechanisms characteristic of cancer canonical pathways. Interestingly, ten ion channels and transporters showed progressive suppression during the course of infection. Although the outcome of this unusual channel expression on cell osmotic homeostasis remains unknown, instability of cell osmotic balance and membrane potential has been implicated in intracellular pathogens egress. Our results highlight the role of histones, actin, cell cycle regulators, and ion channels in MPV infection, and propose these host functions as attractive research focal points in identifying novel drug intervention sites

    Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign

    Get PDF
    In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 10^{9} Mo. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded
    corecore