110 research outputs found

    The in vivo proconvulsant effects of corticotropin releasing hormone in the developing rat are independent of ionotropic glutamate receptor activation.

    Get PDF
    Corticotropin releasing hormone (CRH) produces age-dependent limbic seizures in the infant rat. Both the phenotype and the neuroanatomic matrix of CRH-induced seizures resemble the seizures induced by the rigid glutamate analogue, kainic acid (KA), and by rapid amygdala kindling. The experiments described in this study tested the hypothesis that the in vivo proconvulsant effects of CRH require activation of ionotropic glutamate receptors. Non-competitive (+MK-801) or competitive (CGP-39551) antagonists of N-methyl-d-aspartate (NMDA) receptors decreased or eliminated the motor effects of CRH, but electrographic CRH-induced seizures were unaffected. Administration of CRH antagonists did not affect the acquisition or the maintenance of rapid kindling, which are mediated by NMDA and alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) receptor activation, respectively. CRH receptor blockers failed to alter the latency or duration of seizures induced by activation of KA receptors, and threshold doses of CRH and KA had additive effects. CRH given repeatedly decreased the convulsant threshold dose of KA, probably via injury to hippocampal neurons. These results suggest that CRH and glutamate increase neuronal excitability via independent mechanisms. Because the proconvulsant effects of CRH are highly specific to the developmental period, glutamate-receptor-independent, CRH-receptor mediated excitation may account for some of the enhanced susceptibility to seizures during this period

    ACTH treatment of infantile spasms: mechanisms of its effects in modulation of neuronal excitability.

    Get PDF
    The efficacy of ACTH, particularly in high doses, for rapid and complete elimination of infantile spasms (IS) has been demonstrated in prospective controlled studies. However, the mechanisms for this efficacy remain unknown. ACTH promotes the release of adrenal steroids (glucocorticoids), and most ACTH effects on the central nervous system have been attributed to activation of glucocorticoid receptors. The manner in which activation of these receptors improves IS and the basis for the enhanced therapeutic effects of ACTH--compared with steroids--for this disorder are the focus of this chapter. First, a possible "common excitatory pathway," which is consistent with the many etiologies of IS and explains the confinement of this disorder to infancy, is proposed. This notion is based on the fact that all of the entities provoking IS activate the native "stress system" of the brain. This involves increased synthesis and release of the stress-activated neuropeptide, corticotropin-releasing hormone (CRH), in limbic, seizure-prone brain regions. CRH causes severe seizures in developing experimental animals, as well as limbic neuronal injury. Steroids, given as therapy or secreted from the adrenal gland upon treatment with ACTH, decrease the production and release of CRH in certain brain regions. Second, the hypothesis that ACTH directly influences limbic neurons via the recently characterized melanocortin receptors is considered, focusing on the effects of ACTH on the expression of CRH. Experimental data showing that ACTH potently reduces CRH expression in amygdala neurons is presented. This downregulation was not abolished by experimental elimination of steroids or by blocking their receptors and was reproduced by a centrally administered ACTH fragment that does not promote steroid release. Importantly, selective blocking of melanocortin receptors prevented ACTH-induced downregulation of CRH expression, providing direct evidence for the involvement of these receptors in the mechanisms by which ACTH exerts this effect. Thus, ACTH may reduce neuronal excitability in IS by two mechanisms of action: (1) by inducing steroid release and (2) by a direct, steroid-independent action on melanocortin receptors. These combined effects may explain the robust established clinical effects of ACTH in the therapy of IS

    How do the many etiologies of West syndrome lead to excitability and seizures? The corticotropin releasing hormone excess hypothesis.

    Get PDF
    West syndrome (WS) is associated with diverse etiological factors. This fact has suggested that there must be a 'final common pathway' for these etiologies, which operates on the immature brain to result in WS only at the maturational state present during infancy. Any theory for the pathogenesis of WS has to account for the unique features of this disorder. For example, how can a single entity have so many etiologies? Why does WS arise only in infancy, even when a known insult had occurred prenatally, and why does it disappear? Why is WS associated with lasting cognitive dysfunction? And, importantly, why do these seizures--unlike most others--respond to treatment by a hormone, ACTH? The established hormonal role of ACTH in human physiology is to function in the neuroendocrine cascade of the responses to all stressful stimuli, including insults to the brain. As part of this function, ACTH is known to suppress the production of corticotropin releasing hormone (CRH), a peptide that is produced in response to diverse insults and stressors.The many etiologies of WS all lead to activation of the stress response, including increased production and secretion of the stress-neurohormone CRH. CRH has been shown, in infant animal models, to cause severe seizures and death of neurons in areas involved with learning and memory. These effects of CRH are restricted to the infancy period because the receptors for CRH, which mediate its action on neurons, are most abundant during this developmental period. ACTH administration is known to inhibit production and release of CRH via a negative feedback mechanism. Therefore, the efficacy of ACTH for WS may depend on its ability to decrease the levels of the seizure-promoting stress-neurohormone CRH.This CRH-excess theory for the pathophysiology of WS is consistent not only with the profile of ACTH effects, but also with the many different 'causes' of WS, with the abnormal ACTH levels in the cerebrospinal fluid of affected infants and with the spontaneous disappearance of the seizures. Furthermore, if CRH is responsible for the seizures, and CRH-mediated neuronal injury contributes to the worsened cognitive outcome of individuals with WS, then drugs which block the actions of CRH on its receptors may provide a better therapy for this disorder

    Rapid phosphorylation of the CRE binding protein precedes stress-induced activation of the corticotropin releasing hormone gene in medial parvocellular hypothalamic neurons of the immature rat.

    Get PDF
    The mechanisms of the molecular and neuroendocrine responses to stress in the immature rat have been a focus of intense investigation. A principal regulator of the these responses in both mature and developing rat is the neuropeptide corticotropin releasing hormone (CRH), and levels of hypothalamic CRH mRNA are enhanced by stress. In vitro, transcription of the CRH gene is governed by binding of the phosphorylated form of cAMP responsive element binding protein (pCREB) to the promoter. Here we tested the hypothesis that rapid, stress-induced CRH transcription occurred during the first two postnatal weeks, and is associated with pCREB expression. The time-course of induction of unedited, heteronuclear CRH RNA (CRH hnRNA) was examined in hypothalamic paraventricular nucleus (PVN) of immature rats subjected to both modest and strong acute stressors using in situ hybridization; pCREB abundance was determined in individual neurons in specific PVN sub-nuclei using immunocytochemistry and unbiased quantitative analysis. CRH hnRNA signal was negligible in PVN of immature rats sacrificed under stress-free conditions, but was readily detectable within 2 min, and peaked at 15 min, in PVN of stressed animals. Enhanced pCREB immunoreactivity was evident within 2 min of stress onset, and was enhanced specifically in stress-responsive, CRH-expressing medial parvocellular neurons. These data support the notion that, already during early postnatal life, stress induces rapid CREB phosphorylation, interaction of pCREB-containing transcription complexes with the CRE element of the CRH gene promoter, and initiation of CRH hnRNA production in stress-responsive neurons of rat PVN

    Neurobiology of the stress response early in life: evolution of a concept and the role of corticotropin releasing hormone.

    Get PDF
    Over the last few decades, concepts regarding the presence of hormonal and molecular responses to stress during the first postnatal weeks in the rat and the role of the neuropeptide corticotropin releasing hormone (CRH) in these processes, have been evolving. CRH has been shown to contribute critically to molecular and neuroendocrine responses to stress during development. In turn the expression of this neuropeptide in both hypothalamus and amygdala is differentially modulated by single and recurrent stress, and is determined also by the type of stress (eg, psychological or physiological). A likely transcriptional regulatory factor for modulating CRH gene expression, the cAMP responsive element binding protein CREB, is phosphorylated (activated) in the developing hypothalamus within seconds of stress onset, preceding the transcription of the CRH gene and initiating the activation of stress-induced cellular and neuroendocrine cascades. Finally, early life stress may permanently modify the hypothalamic pituitary adrenal axis and the response to further stressful stimuli, and recent data suggest that CRH may play an integral role in the mechanisms of these long-term changes

    Neuronal activity and stress differentially regulate hippocampal and hypothalamic corticotropin-releasing hormone expression in the immature rat.

    Get PDF
    Corticotropin-releasing hormone, a major neuromodulator of the neuroendocrine stress response, is expressed in the immature hippocampus, where it enhances glutamate receptor-mediated excitation of principal cells. Since the peptide influences hippocampal synaptic efficacy, its secretion from peptidergic interneuronal terminals may augment hippocampal-mediated functions such as learning and memory. However, whereas information regarding the regulation of corticotropin-releasing hormone's abundance in CNS regions involved with the neuroendocrine responses to stress has been forthcoming, the mechanisms regulating the peptide's levels in the hippocampus have not yet been determined. Here we tested the hypothesis that, in the immature rat hippocampus, neuronal stimulation, rather than neuroendocrine challenge, influences the peptide's expression. Messenger RNA levels of corticotropin-releasing hormone in hippocampal CA1, CA3 and the dentate gyrus, as well as in the hypothalamic paraventricular nucleus, were determined after cold, a physiological challenge that activates the hypothalamic pituitary adrenal system in immature rats, and after activation of hippocampal neurons by hyperthermia. These studies demonstrated that, while cold challenge enhanced corticotropin-releasing hormone messenger RNA levels in the hypothalamus, hippocampal expression of this neuropeptide was unchanged. Secondly, hyperthermia stimulated expression of hippocampal immediate-early genes, as well as of corticotropin-releasing hormone. Finally, the mechanism of hippocampal corticotropin-releasing hormone induction required neuronal stimulation and was abolished by barbiturate administration. Taken together, these results indicate that neuronal stimulation may regulate hippocampal corticotropin-releasing hormone expression in the immature rat, whereas the peptide's expression in the hypothalamus is influenced by neuroendocrine challenges

    Increased expression of gamma-aminobutyric acid transporter-1 in the forebrain of infant rats with corticotropin-releasing hormone-induced seizures but not in those with hyperthermia-induced seizures.

    Get PDF
    High affinity, gamma-aminobutyric acid (GABA) plasma membrane transporters (GATs) influence the availability of GABA, the main inhibitory neurotransmitter in the brain. Recent studies suggest a crucial role for GATs in maintaining levels of synaptic GABA in normal as well as abnormal (i.e., epileptic) adult brain. However, the role of GATs during development and specifically changes in their expression in response to developmental seizures are unknown. The present study examined GAT-1-immunolabeling in infant rats with two types of developmental seizures, one induced by corticotropin-releasing hormone (CRH) lasting about 2 h and the other by hyperthermia (a model of febrile seizures) lasting only 20 min. The number of GAT-1-immunoreactive (ir) neurons was increased in several forebrain regions 24 h after induction of seizures by CRH as compared to the control group. Increased numbers of detectable GAT-1-ir cell bodies were found in the hippocampal formation including the dentate gyrus and CA1, and in the neocortex, piriform cortex and amygdala. In contrast, hyperthermia-induced seizures did not cause significant changes in the number of detectable GAT-1-ir somata. The increase in GAT-1-ir somata in the CRH model and not in the hyperthermia model may reflect the difference in the duration of seizures. The brain regions where this increase occurs correlate with the occurrence of argyrophyllic neurons in the CRH model

    Immunocytochemical distribution of corticotropin-releasing hormone receptor type-1 (CRF(1))-like immunoreactivity in the mouse brain: light microscopy analysis using an antibody directed against the C-terminus.

    Get PDF
    Corticotropin-releasing hormone (CRH) receptor type 1 (CRF(1)) is a member of the receptor family mediating the effects of CRH, a critical neuromediator of stress-related endocrine, autonomic, and behavioral responses. The detailed organization and fine localization of CRF(1)-like immunoreactivity (CRF(1)-LI) containing neurons in the rodent have not been described, and is important to better define the functions of this receptor. Here we characterize in detail the neuroanatomical distribution of CRF(1)-immunoreactive (CRF(1)-ir) neurons in the mouse brain, using an antiserum directed against the C-terminus of the receptor. We show that CRF(1)-LI is abundantly yet selectively expressed, and its localization generally overlaps the target regions of CRH-expressing projections and the established distribution of CRF(1) mRNA, with several intriguing exceptions. The most intensely CRF(1)-LI-labeled neurons are found in discrete neuronal systems, i.e., hypothalamic nuclei (paraventricular, supraoptic, and arcuate), major cholinergic and monoaminergic cell groups, and specific sensory relay and association thalamic nuclei. Pyramidal neurons in neocortex and magnocellular cells in basal amygdaloid nucleus are also intensely CRF(1)-ir. Finally, intense CRF(1)-LI is evident in brainstem auditory associated nuclei and several cranial nerves nuclei, as well as in cerebellar Purkinje cells. In addition to their regional specificity, CRF(1)-LI-labeled neurons are characterized by discrete patterns of the intracellular distribution of the immunoreaction product. While generally membrane associated, CRF(1)-LI may be classified as granular, punctate, or homogenous deposits, consistent with differential membrane localization. The selective distribution and morphological diversity of CRF(1)-ir neurons suggest that CRF(1) may mediate distinct functions in different regions of the mouse brain

    Hippocampal corticotropin releasing hormone: pre- and postsynaptic location and release by stress.

    Get PDF
    Neuropeptides modulate neuronal function in hippocampus, but the organization of hippocampal sites of peptide release and actions is not fully understood. The stress-associated neuropeptide corticotropin releasing hormone (CRH) is expressed in inhibitory interneurons of rodent hippocampus, yet physiological and pharmacological data indicate that it excites pyramidal cells. Here we aimed to delineate the structural elements underlying the actions of CRH, and determine whether stress influenced hippocampal principal cells also via actions of this endogenous peptide. In hippocampal pyramidal cell layers, CRH was located exclusively in a subset of GABAergic somata, axons and boutons, whereas the principal receptor mediating the peptide's actions, CRH receptor 1 (CRF1), resided mainly on dendritic spines of pyramidal cells. Acute 'psychological' stress led to activation of principal neurons that expressed CRH receptors, as measured by rapid phosphorylation of the transcription factor cyclic AMP responsive element binding protein. This neuronal activation was abolished by selectively blocking the CRF1 receptor, suggesting that stress-evoked endogenous CRH release was involved in the activation of hippocampal principal cells
    • …
    corecore