14 research outputs found
Recommended from our members
Review of the Gross Anatomy and Microbiology of the Phasmatodea Digestive Tract
The sparse descriptions of the stick insect (Phasmatodea) digestive system as reported/provided in the literature are highly contradictory. This paper describes the digestive systems of several families of Phasmatodea (Timematidae, Heteropterygidae, Diapheromeridae, Pseudophasmatidae, and Phasmatidae) plus the gut microbiome of these and one other (Phylliidae) to both verify past findings and provide a general description of the Phasmatodea alimentary canal. The constrictions imposed by this anatomy on phasmid gut microbiology, its connections to recently released Phasmatodea transcriptomes, and how it differs from the anatomy of related orders in the Polyneoptera are discussed. All Phasmatodea have ridged proventriculi lined or covered with small spines. Anterior projections of the midgut, sometimes described as gastric caeca, are only found in Euphasmatodea and often obscure the proventriculus. We define the cardia as the complex of foregut and midgut tissue where the type II peritrophic matrix is produced. Appendices of the midgut are an autapomorphy for Phasmatodea, but Timema have fewer and larger appendices relative to body size. We suggest caeca-like projections and the loss of large, proventricular teeth are apomorphies of Euphasmatodea. We identify a possible facultative symbiosis in Eucalyptus-feeding species that requires further study
Interallelic complementation provides functional evidence for cohesin–cohesin interactions on DNA
The cohesin complex (Mcd1p, Smc1p, Smc3p, and Scc3p) has multiple roles in chromosome architecture, such as promoting sister chromatid cohesion, chromosome condensation, DNA repair, and transcriptional regulation. The prevailing embrace model for sister chromatid cohesion posits that a single cohesin complex entraps both sister chromatids. We report interallelic complementation between pairs of nonfunctional mcd1 alleles (mcd1-1 and mcd1-Q266) or smc3 alleles (smc3-42 and smc3-K113R). Cells bearing individual mcd1 or smc3 mutant alleles are inviable and defective for both sister chromatid cohesion and condensation. However, cells coexpressing two defective mcd1 or two defective smc3 alleles are viable and have cohesion and condensation. Because cohesin contains only a single copy of Smc3p or Mcd1p, these examples of interallelic complementation must result from interplay or communication between the two defective cohesin complexes, each harboring one of the mutant allele products. Neither mcd1-1p nor smc3-42p is bound to chromosomes when expressed individually at its restrictive temperature. However, their chromosome binding is restored when they are coexpressed with their chromosome-bound interallelic complementing partner. Our results support a mechanism by which multiple cohesin complexes interact on DNA to mediate cohesion and condensation