2,647 research outputs found

    Abrupt Onset of Second Energy Gap at Superconducting Transition of Underdoped Bi2212

    Full text link
    The superconducting gap - an energy scale tied to the superconducting phenomena-opens on the Fermi surface at the superconducting transition temperature (TC) in conventional BCS superconductors. Quite differently, in underdoped high-TC superconducting cuprates, a pseudogap, whose relation to the superconducting gap remains a mystery, develops well above TC. Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above TC is one of the central questions in high-TC research. While some experimental evidence suggests they are distinct, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2212 in the momentum space region overlooked in previous measurements. Near the diagonal of Cu-O bond direction (nodal direction), we found a gap which opens at TC and exhibits a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasiparticles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu-O bond direction (antinodal region) measured in earlier experiments. The emerging two-gap phenomenon points to a picture of richer quantum configurations in high temperature superconductors.Comment: 16 pages, 4 figures, authors' version Corrected typos in the abstrac

    The K2K SciBar Detector

    Get PDF
    A new near detector, SciBar, for the K2K long-baseline neutrino oscillation expe riment was installed to improve the measurement of neutrino energy spectrum and to study neutrino interactions in the energy region around 1 GeV. SciBar is a 'fully active' tracking detector with fine segmentation consisting of plastic scintillator bars. The detector was constructed in summer 2003 and is taking data since October 2003. The basic design and initial performance is presented.Comment: 7 pages, 4figures, Contributed to Proceedings of the 10th Vienna Conference on Instrumentation, Vienna, February 16-21, 200

    Disentangling Cooper-pair formation above Tc from the pseudogap state in the cuprates

    Full text link
    The discovery of the pseudogap in the cuprates created significant excitement amongst physicists as it was believed to be a signature of pairing, in some cases well above the room temperature. In this "pre-formed pairs" scenario, the formation of pairs without quantum phase rigidity occurs below T*. These pairs condense and develop phase coherence only below Tc. In contrast, several recent experiments reported that the pseudogap and superconducting states are characterized by two different energy scales, pointing to a scenario, where the two compete. However a number of transport, magnetic, thermodynamic and tunneling spectroscopy experiments consistently detect a signature of phase-fluctuating superconductivity above leaving open the question of whether the pseudogap is caused by pair formation or not. Here we report the discovery of a spectroscopic signature of pair formation and demonstrate that in a region of the phase diagram commonly referred to as the "pseudogap", two distinct states coexist: one that persists to an intermediate temperature Tpair and a second that extends up to T*. The first state is characterized by a doping independent scaling behavior and is due to pairing above Tc, but significantly below T*. The second state is the "proper" pseudogap - characterized by a "checker board" pattern in STM images, the absence of pair formation, and is likely linked to Mott physics of pristine CuO2 planes. Tpair has a universal value around 130-150K even for materials with very different Tc, likely setting limit on highest, attainable Tc in cuprates. The observed universal scaling behavior with respect to Tpair indicates a breakdown of the classical picture of phase fluctuations in the cuprates.Comment: 9 pages, 4 figure

    Acute and Chronic Impact of Dynamic Exercise on Arterial Stiffness in Older Hypertensives

    Get PDF
    Arterial stiffness increases with ageing and hypertension. Regular physical activity has been recommended as an important management component of hypertension. The purpose of this study was to examine the acute impact of maximal dynamic exercise and the effect of 20 weeks of aerobic exercise on arterial stiffness of the carotid and brachial arteries in older hypertensives. Nine previously sedentary and treated older hypertensives (2 men and 7 women, age 68.2 ± 5.4 yrs) performed maximal treadmill exercise to volitional fatigue while arterial stiffness indices (arterial distensibility and β stiffness index) were measured prior to, immediately (about 10 min) following, and 24 h following maximal exercise. These measurements were repeated following 20 weeks of moderate intensity aerobic exercise training. Maximal exercise had no impact on arterial stiffness indices immediately and 24 h following exercise intervention. Following 20 weeks of training, arterial stiffness indices remained unchanged at rest and following maximal exercise. These data show that, in older hypertensives, 1) acute maximal dynamic exercise had no impact on arterial stiffness of the carotid and brachial arteries, and 2) 20 weeks of moderate intensity aerobic exercise training failed to modify arterial stiffness

    αA-Crystallin Peptide 66SDRDKFVIFLDVKHF80 Accumulating in Aging Lens Impairs the Function of α-Crystallin and Induces Lens Protein Aggregation

    Get PDF
    The eye lens is composed of fiber cells that are filled with α-, β- and γ-crystallins. The primary function of crystallins is to maintain the clarity of the lens through ordered interactions as well as through the chaperone-like function of α-crystallin. With aging, the chaperone function of α-crystallin decreases, with the concomitant accumulation of water-insoluble, light-scattering oligomers and crystallin-derived peptides. The role of crystallin-derived peptides in age-related lens protein aggregation and insolubilization is not understood.We found that αA-crystallin-derived peptide, (66)SDRDKFVIFLDVKHF(80), which accumulates in the aging lens, can inhibit the chaperone activity of α-crystallin and cause aggregation and precipitation of lens crystallins. Age-related change in the concentration of αA-(66-80) peptide was estimated by mass spectrometry. The interaction of the peptide with native crystallin was studied by multi-angle light scattering and fluorescence methods. High molar ratios of peptide-to-crystallin were favourable for aggregation and precipitation. Time-lapse recordings showed that, in the presence of αA-(66-80) peptide, α-crystallin aggregates and functions as a nucleus for protein aggregation, attracting aggregation of additional α-, β- and γ-crystallins. Additionally, the αA-(66-80) peptide shares the principal properties of amyloid peptides, such as β-sheet structure and fibril formation.These results suggest that crystallin-derived peptides such as αA-(66-80), generated in vivo, can induce age-related lens changes by disrupting the structure and organization of crystallins, leading to their insolubilization. The accumulation of such peptides in aging lenses may explain a novel mechanism for age-related crystallin aggregation and cataractogenesis

    CF2 Represses Actin 88F Gene Expression and Maintains Filament Balance during Indirect Flight Muscle Development in Drosophila

    Get PDF
    The zinc finger protein CF2 is a characterized activator of muscle structural genes in the body wall muscles of the Drosophila larva. To investigate the function of CF2 in the indirect flight muscle (IFM), we examined the phenotypes of flies bearing five homozygous viable mutations. The gross structure of the IFM was not affected, but the stronger hypomorphic alleles caused an increase of up to 1.5X in the diameter of the myofibrils. This size increase did not cause any disruption of the hexameric arrangement of thick and thin filaments. RT-PCR analysis revealed an increase in the transcription of several structural genes. Ectopic overexpression of CF2 in the developing IFM disrupts muscle formation. While our results indicate a role for CF2 as a direct negative regulator of the thin filament protein gene Actin 88F (Act88F), effects on levels of transcripts of myosin heavy chain (mhc) appear to be indirect. This role is in direct contrast to that described in the larval muscles, where CF2 activates structural gene expression. The variation in myofibril phenotypes of CF2 mutants suggest the CF2 may have separate functions in fine-tuning expression of structural genes to insure proper filament stoichiometry, and monitoring and/or controlling the final myofibril size

    Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2

    Full text link
    High-transition-temperature (high-Tc) superconductivity is ubiquitous in the cuprates containing CuO2 planes but each cuprate has its own character. The study of the material dependence of the d-wave superconducting gap (SG) should provide important insights into the mechanism of high-Tc. However, because of the 'pseudogap' phenomenon, it is often unclear whether the energy gaps observed by spectroscopic techniques really represent the SG. Here, we report spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They enable us to observe the quasi-particle interference (QPI) effect in this material, through which unambiguous new information on the SG is obtained. The analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level, while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This explains at least in part the remarkable material dependence of TcComment: 13pages, 4fig

    A Reversible Color Polyphenism in American Peppered Moth (Biston betularia cognataria) Caterpillars

    Get PDF
    Insect body color polyphenisms enhance survival by producing crypsis in diverse backgrounds. While color polyphenisms are often indirectly induced by temperature, rearing density, or diet, insects can benefit from immediate crypsis if they evolve polyphenisms directly induced by exposure to the background color, hence immediately deriving protection from predation. Here, we examine such a directly induced color polyphenism in caterpillars of the geometrid peppered moth (Biston betularia). This larval color polyphenism is unrelated to the genetic polymorphism for melanic phenotypes in adult moths. B. betularia caterpillars are generalist feeders and develop body colors that closely match the brown or green twigs of their host plant. We expand on previous studies examining the proximal cues that stimulate color development. Under controlled rearing conditions, we manipulated diets and background reflectance, using both natural and artificial twigs, and show that visual experience has a much stronger effect than does diet in promoting precise color matching. Their induced body color was not a simple response to reflectance or light intensity but instead specifically matched the wavelength of light to which they were exposed. We also show that the potential to change color is retained until the final (sixth) larval instar. Given their broad host range, this directly induced color polyphenism likely provides the caterpillars with strong protection from bird predation

    Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi
    • …
    corecore