21 research outputs found

    Haplotype analysis suggest common founders in carriers of the recurrent BRCA2 mutation, 3398delAAAAG, in French Canadian hereditary breast and/ovarian cancer families

    Get PDF
    BACKGROUND: The 3398delAAAAG mutation in BRCA2 was recently found to recur in breast and/or ovarian cancer families from the French Canadian population of Quebec, a population that has genetic attributes consistent with a founder effect. To characterize the contribution of this mutation in this population, this study established the frequency of this mutation in breast and ovarian cancer cases unselected for family history of cancer, and determined if mutation carriers shared a common ancestry. METHODS: The frequency was estimated by assaying the mutation in series of French Canadian breast cancer cases diagnosed before age 41 (n = 60) or 80 (n = 127) years of age, and ovarian cancer cases (n = 80) unselected for family history of cancer by mutation analysis. Haplotype analysis was performed to determine if mutation carriers shared a common ancestry. Members from 11 families were analyzed using six polymorphic microsatellite markers (cen-D13S260-D13S1699-D13S1698-D13S1697-D13S1701-D13S171-tel) spanning approximately a 3.6 cM interval at the chromosomal region 13q13.1, which contains BRCA2. Allele frequencies were estimated by genotyping 47 unaffected female individuals derived from the same population. Haplotype reconstruction of unaffected individuals was performed using the program PHASE. RESULTS: The recurrent BRCA2 mutation occurred in 1 of 60 (1.7%) women diagnosed with breast cancer before 41 years of age and one of 80 (1.3%) women with ovarian cancer. No mutation carriers were identified in the series of breast cancer cases diagnosed before age 80. Mutation carriers harboured one of two haplotypes, 7-3-9-3 – [3/4]-7, that varied with marker D13S1701 and which occurred at a frequency of 0.001. The genetic analysis of D13S1695, a polymorphic marker located approximately 0.3 cM distal to D13S171, did not favour a genetic recombination event to account for the differences in D13S1701 alleles within the haplotype. Although mutation carriers harbour genotypes that are frequent in the French Canadian population, neither mutation-associated haplotype was plausible in reconstructed haplotypes of 47 individuals of French Canadian descent. CONCLUSION: These results suggest that mutation carriers share a related ancestry; further supporting the concept that recurrent BRCA1 and BRCA2 mutations in the French Canadian population could be attributed to common founders. This finding provides further support for targeted screening of recurrent mutations in this population before large-scale mutation analyses are performed

    Identification of a novel truncating PALB2 mutation and analysis of its contribution to early-onset breast cancer in French-Canadian women

    Get PDF
    Abstract Background PALB2 has recently been identified as a breast cancer susceptibility gene. PALB2 mutations are rare causes of hereditary breast cancer but may be important in countries such as Finland where a founder mutation is present. We sought to estimate the contribution of PALB2 mutations to the burden of breast cancer in French Canadians from Quebec. Methods We screened all coding exons of PALB2 in a sample of 50 French-Canadian women diagnosed with either early-onset breast cancer or familial breast cancer at a single Montreal hospital. The genetic variants identified in this sample were then studied in 356 additional women with breast cancer diagnosed before age 50 and in 6,448 newborn controls. Results We identified a single protein-truncating mutation in PALB2 (c.2323 C>T, resulting in Q775X) in 1 of the 50 high-risk women. This variant was present in 2 of 356 breast cancer cases and in none of 6,440 newborn French-Canadian controls (P = 0.003). We also identified two novel new non-synonymous single nucleotide polymorphisms in exon 4 of PALB2 (c.5038 A>G [I76V] and c.5156 G>T [G115V]). G115V was found in 1 of 356 cases and in 15 of 6,442 controls (P = 0.6). The I76V variant was not identified in either the extended case series or the controls. Conclusion We have identified a novel truncating mutation in PALB2. The mutation was found in approximately 0.5% of unselected French-Canadian women with early-onset breast cancer and appears to have a single origin. Although mutations are infrequent, PALB2 can be added to the list of breast cancer susceptibility genes for which founder mutations have been identified in the French-Canadian population

    Genetic analyses of DNA repair pathway associated genes implicate new candidate cancer predisposing genes in ancestrally defined ovarian cancer cases

    No full text
    Not all familial ovarian cancer (OC) cases are explained by pathogenic germline variants in known risk genes. A candidate gene approach involving DNA repair pathway genes was applied to identify rare recurring pathogenic variants in familial OC cases not associated with known OC risk genes from a population exhibiting genetic drift. Whole exome sequencing (WES) data of 15 OC cases from 13 families tested negative for pathogenic variants in known OC risk genes were investigated for candidate variants in 468 DNA repair pathway genes. Filtering and prioritization criteria were applied to WES data to select top candidates for further analyses. Candidates were genotyped in ancestry defined study groups of 214 familial and 998 sporadic OC or breast cancer (BC) cases and 1025 population-matched controls and screened for additional carriers in 605 population-matched OC cases. The candidate genes were also analyzed in WES data from 937 familial or sporadic OC cases of diverse ancestries. Top candidate variants in ERCC5, EXO1, FANCC, NEIL1 and NTHL1 were identified in 5/13 (39%) OC families. Collectively, candidate variants were identified in 7/435 (1.6%) sporadic OC cases and 1/566 (0.2%) sporadic BC cases versus 1/1025 (0.1%) controls. Additional carriers were identified in 6/605 (0.9%) OC cases. Tumour DNA from ERCC5, NEIL1 and NTHL1 variant carriers exhibited loss of the wild-type allele. Carriers of various candidate variants in these genes were identified in 31/937 (3.3%) OC cases of diverse ancestries versus 0-0.004% in cancer-free controls. The strategy of applying a candidate gene approach in a population exhibiting genetic drift identified new candidate OC predisposition variants in DNA repair pathway genes

    The Genetic and Molecular Analyses of RAD51C and RAD51D Identifies Rare Variants Implicated in Hereditary Ovarian Cancer from a Genetically Unique Population

    No full text
    To identify candidate variants in RAD51C and RAD51D ovarian cancer (OC) predisposing genes by investigating French Canadians (FC) exhibiting unique genetic architecture. Candidates were identified by whole exome sequencing analysis of 17 OC families and 53 early-onset OC cases. Carrier frequencies were determined by the genetic analysis of 100 OC or HBOC families, 438 sporadic OC cases and 1025 controls. Variants of unknown function were assayed for their biological impact and/or cellular sensitivity to olaparib. RAD51C c.414G>C;p.Leu138Phe and c.705G>T;p.Lys235Asn and RAD51D c.137C>G;p.Ser46Cys, c.620C>T;p.Ser207Leu and c.694C>T;p.Arg232Ter were identified in 17.6% of families and 11.3% of early-onset cases. The highest carrier frequency was observed in OC families (1/44, 2.3%) and sporadic cases (15/438, 3.4%) harbouring RAD51D c.620C>T versus controls (1/1025, 0.1%). Carriers of c.620C>T (n = 7), c.705G>T (n = 2) and c.137C>G (n = 1) were identified in another 538 FC OC cases. RAD51C c.705G>T affected splicing by skipping exon four, while RAD51D p.Ser46Cys affected protein stability and conferred olaparib sensitivity. Genetic and functional assays implicate RAD51C c.705G>T and RAD51D c.137C>G as likely pathogenic variants in OC. The high carrier frequency of RAD51D c.620C>T in FC OC cases validates previous findings. Our findings further support the role of RAD51C and RAD51D in hereditary OC

    A functionally impaired missense variant identified in French Canadian families implicates FANCI as a candidate ovarian cancer-predisposing gene

    No full text
    BACKGROUND: Familial ovarian cancer (OC) cases not harbouring pathogenic variants in either of the BRCA1 and BRCA2 OC-predisposing genes, which function in homologous recombination (HR) of DNA, could involve pathogenic variants in other DNA repair pathway genes. METHODS: Whole exome sequencing was used to identify rare variants in HR genes in a BRCA1 and BRCA2 pathogenic variant negative OC family of French Canadian (FC) ancestry, a population exhibiting genetic drift. OC cases and cancer-free individuals from FC and non-FC populations were investigated for carrier frequency of FANCI c.1813C>T; p.L605F, the top-ranking candidate. Gene and protein expression were investigated in cancer cell lines and tissue microarrays, respectively. RESULTS: In FC subjects, c.1813C>T was more common in familial (7.1%, 3/42) than sporadic (1.6%, 7/439) OC cases (P = 0.048). Carriers were detected in 2.5% (74/2950) of cancer-free females though female/male carriers were more likely to have a first-degree relative with OC (121/5249, 2.3%; Spearman correlation = 0.037; P = 0.011), suggesting a role in risk. Many of the cancer-free females had host factors known to reduce risk to OC which could influence cancer risk in this population. There was an increased carrier frequency of FANCI c.1813C>T in BRCA1 and BRCA2 pathogenic variant negative OC families, when including the discovery family, compared to cancer-free females (3/23, 13%; OR = 5.8; 95%CI = 1.7-19; P = 0.005). In non-FC subjects, 10 candidate FANCI variants were identified in 4.1% (21/516) of Australian OC cases negative for pathogenic variants in BRCA1 and BRCA2, including 10 carriers of FANCI c.1813C>T. Candidate variants were significantly more common in familial OC than in sporadic OC (P = 0.04). Localization of FANCD2, part of the FANCI-FANCD2 (ID2) binding complex in the Fanconi anaemia (FA) pathway, to sites of induced DNA damage was severely impeded in cells expressing the p.L605F isoform. This isoform was expressed at a reduced level, destabilized by DNA damaging agent treatment in both HeLa and OC cell lines, and exhibited sensitivity to cisplatin but not to a poly (ADP-ribose) polymerase inhibitor. By tissue microarray analyses, FANCI protein was consistently expressed in fallopian tube epithelial cells and only expressed at low-to-moderate levels in 88% (83/94) of OC samples. CONCLUSIONS: This is the first study to describe candidate OC variants in FANCI, a member of the ID2 complex of the FA DNA repair pathway. Our data suggest that pathogenic FANCI variants may modify OC risk in cancer families
    corecore