38 research outputs found

    Metabolic Syndrome and Cardiovascular Disease after Hematopoietic Cell Transplantation: Screening and Preventive Practice Recommendations from the CIBMTR and EBMT

    Get PDF
    Metabolic syndrome (MetS) is a constellation of cardiovascular risk factors that increases the risk of cardiovascular disease, diabetes mellitus, and all-cause mortality. Long-term survivors of hematopoietic cell transplantation (HCT) have a substantial risk of developing MetS and cardiovascular disease, with an estimated prevalence of MetS of 31% to 49% among HCT recipients. Although MetS has not yet been proven to impact cardiovascular risk after HCT, an understanding of the incidence and risk factors for MetS in HCT recipients can provide the foundation to evaluate screening guidelines and develop interventions that may mitigate cardiovascular-related mortality. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to review literature and recommend practices appropriate to HCT recipients. Here we deliver consensus recommendations to help clinicians provide screening and preventive care for MetS and cardiovascular disease among HCT recipients. All HCT survivors should be advised of the risks of MetS and encouraged to undergo recommended screening based on their predisposition and ongoing risk factors

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity

    No full text
    There is an association between growing slowly before birth, accelerated growth in early postnatal life and the emergence of insulin resistance, visceral obesity and glucose intolerance in adult life. In this review we consider the pathway through which intrauterine growth restriction (IUGR) leads to the initial increase in insulin sensitivity and to catch-up growth. We also discuss the importance of the early insulin environment in determining later visceral adiposity and the intrahepatic mechanisms that may result in the emergence of glucose intolerance in a subset of IUGR infants. We present evidence that a key fetal adaptation to poor fetal nutrition is an upregulation of the abundance of the insulin receptor in the absence of an upregulation of insulin signalling in fetal skeletal muscle. After birth, however, there is an upregulation in the abundance of the insulin receptor and the insulin signalling pathway in the IUGR offspring. Thus, the origins of the accelerated postnatal growth rate experienced by IUGR infants lie in the fetal adaptations to a poor nutrient supply. We also discuss how the intracellular availability of free fatty acids and glucose within the visceral adipocyte and hepatocyte in fetal and neonatal life are critical in determining the subsequent metabolic phenotype of the IUGR offspring. It is clear that a better understanding of the relative contributions of the fetal and neonatal nutrient environment to the regulation of key insulin signalling pathways in muscle, visceral adipose tissue and the liver is required to support the development of evidence-based intervention strategies and better outcomes for the IUGR infant.Janna L. Morrison, Jaime A. Duffield, Beverly S. Muhlhausler, Sheridan Gentili, Isabella C. McMille

    Placental restriction increases adipose leptin gene expression and plasma leptin and alters their relationship to feeding activity in the young lamb

    No full text
    Low birth weight and catch-up growth predict increased adiposity in children and adults. This may be due in part to leptin resistance, as adults who were born small exhibit increased plasma leptin concentration relative to adiposity. Placental restriction (PR), a major cause of intrauterine growth restriction, reduces size at birth and increases feeding activity and adiposity by 6 wk in sheep. We hypothesized that PR would increase plasma leptin concentration and alter its relationship with feeding activity and adiposity in young lambs. Body size, plasma leptin, feeding activity, adiposity, leptin, and leptin receptor gene expression in adipose tissue were measured (12 control, 12 PR). PR reduced size at birth and increased adiposity. Plasma leptin concentration decreased with age, but to a lesser extent after PR and correlated positively with adiposity similarly in control and PR. PR increased plasma leptin concentration and perirenal adipose tissue leptin expression. Feeding activity correlated negatively with plasma leptin concentration in controls, but positively after PR. PR increases adipose tissue leptin expression and plasma leptin concentration, however, this increased abundance of peripheral leptin does not inhibit feeding activity (suckling event frequency), suggesting PR programs resistance to appetite and energy balance regulation by leptin, leading to early onset obesity.Miles J. De Blasio, Dominique Blache, Kathryn L. Gatford, Jeffrey S. Robinson and Julie A. Owen
    corecore