9 research outputs found

    Active Learning for Auditory Hierarchy

    Get PDF
    Much audio content today is rendered as a static stereo mix: fundamentally a fixed single entity. Object-based audio envisages the delivery of sound content using a collection of individual sound ‘objects’ controlled by accompanying metadata. This offers potential for audio to be delivered in a dynamic manner providing enhanced audio for consumers. One example of such treatment is the concept of applying varying levels of data compression to sound objects thereby reducing the volume of data to be transmitted in limited bandwidth situations. This application motivates the ability to accurately classify objects in terms of their ‘hierarchy’. That is, whether or not an object is a foreground sound, which should be reproduced at full quality if possible, or a background sound, which can be heavily compressed without causing a deterioration in the listening experience. Lack of suitably labelled data is an acknowledged problem in the domain. Active Learning is a method that can greatly reduce the manual effort required to label a large corpus by identifying the most effective instances to train a model to high accuracy levels. This paper compares a number of Active Learning methods to investigate which is most effective in the context of a hierarchical labelling task on an audio dataset. Results show that the number of manual labels required can be reduced to 1.7% of the total dataset while still retaining high prediction accuracy

    Development and Validation of the Computerised Adaptive Beat Alignment Test (CA-BAT)

    Get PDF
    Beat perception is increasingly being recognised as a fundamental musical ability. A number of psychometric instruments have been developed to assess this ability, but these tests do not take advantage of modern psychometric techniques, and rarely receive systematic validation. The present research addresses this gap in the literature by developing and validating a new test, the Computerised Adaptive Beat Alignment Test (CA-BAT), a variant of the Beat Alignment Test (BAT) that leverages recent advances in psychometric theory, including item response theory, adaptive testing, and automatic item generation. The test is constructed and validated in four empirical studies. The results support the reliability and validity of the CA-BAT for laboratory testing, but suggest that the test is not well-suited to online testing, owing to its reliance on fne perceptual discrimination

    A second update on mapping the human genetic architecture of COVID-19

    Get PDF
    corecore