8 research outputs found

    Serum potassium and adverse outcomes across the range of kidney function: a CKD Prognosis Consortium meta-analysis.

    No full text
    Aims: Both hypo- and hyperkalaemia can have immediate deleterious physiological effects, and less is known about long-term risks. The objective was to determine the risks of all-cause mortality, cardiovascular mortality, and end-stage renal disease associated with potassium levels across the range of kidney function and evaluate for consistency across cohorts in a global consortium. Methods and results: We performed an individual-level data meta-analysis of 27 international cohorts [10 general population, 7 high cardiovascular risk, and 10 chronic kidney disease (CKD)] in the CKD Prognosis Consortium. We used Cox regression followed by random-effects meta-analysis to assess the relationship between baseline potassium and adverse outcomes, adjusted for demographic and clinical characteristics, overall and across strata of estimated glomerular filtration rate (eGFR) and albuminuria. We included 1 217 986 participants followed up for a mean of 6.9 years. The average age was 55 ± 16 years, average eGFR was 83 ± 23 mL/min/1.73 m2, and 17% had moderate- to-severe increased albuminuria levels. The mean baseline potassium was 4.2 ± 0.4 mmol/L. The risk of serum potassium of >5.5 mmol/L was related to lower eGFR and higher albuminuria. The risk relationship between potassium levels and adverse outcomes was U-shaped, with the lowest risk at serum potassium of 4-4.5 mmol/L. Compared with a reference of 4.2 mmol/L, the adjusted hazard ratio for all-cause mortality was 1.22 [95% confidence interval (CI) 1.15-1.29] at 5.5 mmol/L and 1.49 (95% CI 1.26-1.76) at 3.0 mmol/L. Risks were similar by eGFR, albuminuria, renin-angiotensin-aldosterone system inhibitor use, and across cohorts. Conclusions: Outpatient potassium levels both above and below the normal range are consistently associated with adverse outcomes, with similar risk relationships across eGFR and albuminuria

    Relationship of Estimated GFR and Albuminuria to Concurrent Laboratory Abnormalities: An Individual Participant Data Meta-analysis in a Global Consortium

    No full text
    Rationale & Objective Chronic kidney disease (CKD) is complicated by abnormalities that reflect disruption in filtration, tubular, and endocrine functions of the kidney. Our aim was to explore the relationship of specific laboratory result abnormalities and hypertension with the estimated glomerular filtration rate (eGFR) and albuminuria CKD staging framework. Study Design Cross-sectional individual participant-level analyses in a global consortium. Setting & Study Populations 17 CKD and 38 general population and high-risk cohorts. Selection Criteria for Studies Cohorts in the CKD Prognosis Consortium with data for eGFR and albuminuria, as well as a measurement of hemoglobin, bicarbonate, phosphorus, parathyroid hormone, potassium, or calcium, or hypertension. Data Extraction Data were obtained and analyzed between July 2015 and January 2018. Analytical Approach We modeled the association of eGFR and albuminuria with hemoglobin, bicarbonate, phosphorus, parathyroid hormone, potassium, and calcium values using linear regression and with hypertension and categorical definitions of each abnormality using logistic regression. Results were pooled using random-effects meta-analyses. Results The CKD cohorts (n = 254,666 participants) were 27% women and 10% black, with a mean age of 69 (SD, 12) years. The general population/high-risk cohorts (n = 1,758,334) were 50% women and 2% black, with a mean age of 50 (16) years. There was a strong graded association between lower eGFR and all laboratory result abnormalities (ORs ranging from 3.27 [95% CI, 2.68-3.97] to 8.91 [95% CI, 7.22-10.99] comparing eGFRs of 15 to 29 with eGFRs of 45 to 59 mL/min/1.73 m2), whereas albuminuria had equivocal or weak associations with abnormalities (ORs ranging from 0.77 [95% CI, 0.60-0.99] to 1.92 [95% CI, 1.65-2.24] comparing urinary albumin-creatinine ratio > 300 vs < 30 mg/g). Limitations Variations in study era, health care delivery system, typical diet, and laboratory assays. Conclusions Lower eGFR was strongly associated with higher odds of multiple laboratory result abnormalities. Knowledge of risk associations might help guide management in the heterogeneous group of patients with CKD

    Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium

    No full text
    Objective To evaluate the associations between adiposity measures (body mass index, waist circumference, and waist-to-height ratio) with decline in glomerular filtration rate (GFR) and with all cause mortality. Design Individual participant data meta-analysis. Setting Cohorts from 40 countries with data collected between 1970 and 2017. Participants Adults in 39 general population cohorts (n=5 459 014), of which 21 (n=594 496) had data on waist circumference; six cohorts with high cardiovascular risk (n=84 417); and 18 cohorts with chronic kidney disease (n=91 607). Main outcome measures GFR decline (estimated GFR decline ≥40%, initiation of kidney replacement therapy or estimated GFR <10 mL/min/1.73 m2) and all cause mortality. Results Over a mean follow-up of eight years, 246 607 (5.6%) individuals in the general population cohorts had GFR decline (18 118 (0.4%) end stage kidney disease events) and 782 329 (14.7%) died. Adjusting for age, sex, race, and current smoking, the hazard ratios for GFR decline comparing body mass indices 30, 35, and 40 with body mass index 25 were 1.18 (95% confidence interval 1.09 to 1.27), 1.69 (1.51 to 1.89), and 2.02 (1.80 to 2.27), respectively. Results were similar in all subgroups of estimated GFR. Associations weakened after adjustment for additional comorbidities, with respective hazard ratios of 1.03 (0.95 to 1.11), 1.28 (1.14 to 1.44), and 1.46 (1.28 to 1.67). The association between body mass index and death was J shaped, with the lowest risk at body mass index of 25. In the cohorts with high cardiovascular risk and chronic kidney disease (mean follow-up of six and four years, respectively), risk associations between higher body mass index and GFR decline were weaker than in the general population, and the association between body mass index and death was also J shaped, with the lowest risk between body mass index 25 and 30. In all cohort types, associations between higher waist circumference and higher waist-to-height ratio with GFR decline were similar to that of body mass index; however, increased risk of death was not associated with lower waist circumference or waist-to-height ratio, as was seen with body mass index. Conclusions Elevated body mass index, waist circumference, and waist-to-height ratio are independent risk factors for GFR decline and death in individuals who have normal or reduced levels of estimated GFR
    corecore