232 research outputs found

    Canine C-reactive protein:a study on the applicability of canine serum C-reactive protein

    Get PDF

    Detailed near-wake flowfield surveys with comparison to an Euler method of an aspect ratio 4 rectangular wing

    Get PDF
    An experimental investigation of the flowfield in the near-wake of an aspect ratio 4 rectangular wing was conducted, providing a complete detailed set of data for use in the validation of computational methods. An angle of attack of 8 degrees and two Reynolds numbers 530,000 and 391,000 were investigated using pitot and six-hole probes. In addition, two types of flow visualization were employed. The data presented includes contours of total pressure, mean velocity, flow angularity, and vorticity distribution data at five chordwise stations of the near-wake ranging from 0.167 to 5.00 chord lengths aft of the trailing edge. The experimental results were compared to the predicted results of a 2-D Euler numerical method. The results predicted by an Euler method failed to accurately define the flowfield. Tangential velocities remained relatively constant over the range of X/C considered though increased in angle of attack and Reynolds number did bring about corresponding increases. Axial velocities also increased with angle of attack and Reynolds number but showed greater sensitivity to increases in X/C. Graphic displays and contours of the total pressure data indicate that roll-up of the wing tip vortex is essentially complete one and one half chords downstream of the trailing edge

    Accurate and efficient constrained molecular dynamics of polymers using Newton's method and special purpose code

    Get PDF
    In molecular dynamics simulations we can often increase the time step by imposing constraints on bond lengths and bond angles. This allows us to extend the length of the time interval and therefore the range of physical phenomena that we can afford to simulate. We examine the existing algorithms and software for solving nonlinear constraint equations in parallel and we explain why it is necessary to advance the state-of-the-art. We present ILVES-PC, a new algorithm for imposing bond constraints on proteins accurately and efficiently. It solves the same system of differential algebraic equations as the celebrated SHAKE algorithm, but ILVES-PC solves the nonlinear constraint equations using Newton’s method rather than the nonlinear Gauss-Seidel method. Moreover, ILVES-PC solves the necessary linear systems using a specialized linear solver that exploits the structure of the protein. ILVES-PC can rapidly solve constraint equations as accurately as the hardware will allow. The run-time of ILVES-PC is proportional to the number of constraints. We have integrated ILVES-PC into GROMACS and simulated proteins of different sizes. Compared with SHAKE, we have achieved speedups of up to 4.9× in single-threaded executions and up to 76× in shared-memory multi-threaded executions. Moreover, ILVES-PC is more accurate than P-LINCS algorithm. Our work is a proof-of-concept of the utility of software designed specifically for the simulation of polymers

    Modelling severe Staphylococcus aureus sepsis in conscious pigs: are implications for animal welfare justified?

    Get PDF
    BACKGROUND: A porcine model of haematogenous Staphylococcus aureus sepsis has previously been established in our research group. In these studies, pigs developed severe sepsis including liver dysfunction during a 48 h study period. As pigs were awake during the study, animal welfare was challenged by the severity of induced disease, which in some cases necessitated humane euthanasia. A pilot study was therefore performed in order to establish the sufficient inoculum concentration and application protocol needed to produce signs of liver dysfunction within limits of our pre-defined humane endpoints. METHODS: Four pigs received 1 × 10(8) cfu/kg BW of S. aureus, and two controls were sham inoculated with saline. A fixed infusion rate of 3 mL/min was used, while the inoculum concentration, i.e., the dose volume, was changed between the pigs. The following dose volumes were used: 10 mL (n = 1), 20 mL (n = 2), and 30 mL (n = 1), corresponding to infusion durations of 3.33, 6.66, and 10 min at dose rates of 3 × 10(7), 1.5 × 10(7), and 1 × 10(7) cfu/min/kg BW, respectively. Blood samples were drawn for complete blood count, clinical chemistry, and inflammatory markers before and every 6 h after inoculation. Prior to euthanasia, a galactose elimination capacity test was performed to assess liver function. Pigs were euthanised 48 h post inoculation for necropsy and histopathological evaluation. RESULTS: While infusion times of 6.66 min, and higher, did not induce liver dysfunction (n = 3), the infusion time of 3.33 min (n = 1) caused alterations in parameters similar to what had been seen in our previous studies, i.e., increasing bilirubin and aspartate aminotransferase, as well as histopathological occurrence of intravascular fibrin split products in the liver. This pig was however euthanised after 30 h, according to humane endpoints. CONCLUSIONS: A usable balance between scientific purpose and animal welfare could not be achieved, and we therefore find it hard to justify further use of this conscious porcine sepsis model. In order to make a model of translational relevance for human sepsis, we suggest that future model versions should use long-term anaesthesia
    • …
    corecore