15 research outputs found

    Targeting Phosphatidylserine on Apoptotic Cells with Phages and Peptides Selected from a Bacteriophage Display Library

    No full text
    Phosphatidylserine (PS) is a well-characterized biomarker for apoptosis. Ligands that bind to PS can be used for noninvasive imaging of therapy-induced cell death, particularly apoptosis. In this study, we screened a random 12-mer peptide phage library on liposomes prepared from PS. One clone displaying the peptide SVSVGMKPSPRP (designated as PS3-10) bound to PS approximately 4-fold better than its binding to phosphatidylcholine and 18-fold better than to bovine serum albumin in a solid-phase binding assay. In addition, the binding of the corresponding PS3-10 peptide to PS was significantly higher than that of a scrambled peptide. PS3-10 phages, but not a control 4-2-2 phage, bound to aged red blood cells that had PS exposed on their surface. Binding of PS3-10 phages and PS3-10 peptide to TRAIL-induced apoptotic DLD1 cells was 3.2 and 5.4 times higher than their binding to untreated viable cells, respectively. Significantly, immunohistochemical staining confirmed selective binding of PS3-10 phages to apoptotic cells. Our data suggest that panning of phage display libraries may allow the selection of suitable peptide ligands for apoptotic cells and that PS3-10 peptide may serve as a template for further development of molecular probes for in vitro and in vivo imaging of apoptosis

    Detection of Apoptotic Cells in a Rabbit Model with Atherosclerosis-Like Lesions Using the Positron Emission Tomography Radiotracer [ 18

    No full text
    [ 18 F]ML-10 (2-(5-fluoro-pentyl)-2-methylmalonic acid) is a positron emission tomography (PET) radiotracer that accumulates in cells presenting apoptosis-specific membrane alterations. The aim of this study was to test whether [ 18 F]ML-10 allows for the detection of apoptotic cells located in atherosclerotic plaques in rabbits. Atherosclerotic plaques were induced in the aortas of five rabbits, and five additional rabbits were used as controls. Activity in the aortas was quantified in vivo and ex vivo. The localization of [ 18 F]ML-10 to the aortic wall was identified by autoradiography. Average target to background ratios measured in vivo by PET were higher in the aortas of atherosclerotic rabbits compared with those of control rabbits (2.00 ± 0.52 vs 1.22 ± 0.30; p < .05). Differences in [ 18 F]ML-10 uptake between atherosclerotic and control aortas were confirmed ex vivo by PET and gamma counting (23.9 ± 11.2 vs 1.1 ± 2.4 counts/pixel; p <.05; 3.6 ± 2.0 vs 0.05 ± 0.05 % of injected activity/g; p < .05, respectively). Strong correlation was observed between the accumulation of [ 18 F]ML-10 in aortic segments as detected by autoradiography and the number of apoptotic cells on corresponding histologic sections ( r 2 = .75; p < .05). In this study, we found that atherosclerotic plaques rich in apoptotic cells can be detected with [ 18 F]ML-10 and PET

    Evaluation of a 99mTc-labeled AnnexinA5 variant for non-invasive SPECT imaging of cell death in liver, spleen and prostate.

    No full text
    Item does not contain fulltextPURPOSE: We investigate radio-labeling and pharmacokinetics of a new AnnexinA5 variant (HYNIC-cys-AnxA5) and then assess its utility for the non-invasive detection of cell death in liver, spleen and prostate. METHODS: AnnexinA5 binds to phosphatidylserine expressed on the surface of apoptotic and necrotic cells. Contrary to other AnnexinA5 variants, the new cys-AnxA5 allows for site-specific conjugation of a hydrazinonicotinamide-maleimide moiety and subsequent radio-labeling with (99m)Tc at a position not involved in the AnxA5-phosphatidylserine interaction. Distribution of (99m)Tc-HYNIC-cys-AnxA5 was studied in rats, both invasively and via SPECT/CT. Cycloheximide was used to induce cell death in liver and spleen, whereas apoptosis in the prostate was induced by castration. RESULTS: HYNIC-cys-AnxA5 was efficiently and reproducibly labeled with (99m)Tc. Blood clearance of radioactivity after iv-injection was adequately described by a two-compartment model, the renal cortex representing the main site of accumulation. Cycloheximide treatment resulted in increased accumulation of intravenous-injected (99m)Tc-HYNIC-cys-AnxA5 in liver and spleen over controls, which correlated well with TUNEL staining for cell death in corresponding tissue sections. However, the increase in TUNEL-positive prostate epithelial cells observed following castration was not paralleled by greater (99m)Tc-HYNIC-cys-AnxA5 accumulation. CONCLUSION: (99m)Tc-HYNIC-cys-AnxA5 appears a suitable tracer for assessment of cell death in liver and spleen, but not prostate
    corecore