781 research outputs found

    Altered Innate Immune Responses in Neutrophils from Patients with Well- and Suboptimally Controlled Asthma

    Get PDF
    © 2015 Francesca S. M. Tang et al. Background. Respiratory infections are a major cause of asthma exacerbations where neutrophilic inflammation dominates and is associated with steroid refractory asthma. Structural airway cells in asthma differ from nonasthmatics; however it is unknown if neutrophils differ. We investigated neutrophil immune responses in patients who have good (AGood) and suboptimal (ASubopt) asthma symptom control. Methods. Peripheral blood neutrophils from AGood (ACQ 0.75, n=7), and healthy controls (HC) (n=9) were stimulated with bacterial (LPS (1 g/mL), fMLF (100 nM)), and viral (imiquimod (3 g/mL), R848 (1.5 g/mL), and poly I:C (10 g/mL)) surrogates or live rhinovirus (RV) 16 (MOI1). Cell-free supernatant was collected after 1 h for neutrophil elastase (NE) and matrix metalloproteinase- (MMP-) 9 measurements or after 24 h for CXCL8 release. Results. Constitutive NE was enhanced in AGood neutrophils compared to HC. fMLF stimulated neutrophils from ASubopt but not AGood produced 50% of HC levels. fMLF induced MMP-9 was impaired in ASubopt and AGood compared to HC. fMLF stimulated CXCL8 but not MMP-9 was positively correlated with FEV1 and FEV1/FVC. ASubopt and AGood responded similarly to other stimuli. Conclusions. Circulating neutrophils are different in asthma; however, this is likely to be related to airflow limitation rather than asthma control

    Azithromycin treatment modifies airway and blood gene expression networks in neutrophilic COPD.

    Full text link
    Long-term, low-dose azithromycin reduces exacerbation frequency in chronic obstructive pulmonary disease (COPD), yet the mechanism remains unclear. This study characterised genome-wide gene expression changes in patients with neutrophilic COPD following long-term, low-dose azithromycin treatment. Patients with neutrophilic COPD (>61% or >162×104 cells per mL sputum neutrophils) were randomised to receive either azithromycin or placebo for 12 weeks. Sputum and blood were obtained before and after 12 weeks of treatment. Gene expression was defined using microarrays. Networks were analysed using the Search Tool for the Retrieval of Interacting Gene database. In sputum, 403 genes were differentially expressed following azithromycin treatment (171 downregulated and 232 upregulated), and three following placebo treatment (one downregulated and two upregulated) compared to baseline (adjusted p1.5). In blood, 138 genes were differentially expressed with azithromycin (121 downregulated and 17 upregulated), and zero with placebo compared to baseline (adjusted p1.3). Network analysis revealed one key network in both sputum (14 genes) and blood (46 genes), involving interferon-stimulated genes, human leukocyte antigens and genes regulating T-cell responses. Long-term, low-dose azithromycin is associated with downregulation of genes regulating antigen presentation, interferon and T-cell responses, and numerous inflammatory pathways in the airways and blood of neutrophilic COPD patients

    Peripheral blood eosinophils: a surrogate marker for airway eosinophilia in stable COPD.

    Get PDF
    INTRODUCTION: Sputum eosinophilia occurs in approximately one-third of stable chronic obstructive pulmonary disease (COPD) patients and can predict exacerbation risk and response to corticosteroid treatments. Sputum induction, however, requires expertise, may not always be successful, and does not provide point-of-care results. Easily applicable diagnostic markers that can predict sputum eosinophilia in stable COPD patients have the potential to progress COPD management. This study investigated the correlation and predictive relationship between peripheral blood and sputum eosinophils. It also examined the repeatability of blood eosinophil counts. METHODS: Stable COPD patients (n=141) were classified as eosinophilic or noneosinophilic based on their sputum cell counts (≥3%), and a cross-sectional analysis was conducted comparing their demographics, clinical characteristics, and blood cell counts. Receiver operating characteristic curve analysis was used to assess the predictive ability of blood eosinophils for sputum eosinophilia. Intraclass correlation coefficient was used to examine the repeatability of blood eosinophil counts. RESULTS: Blood eosinophil counts were significantly higher in patients with sputum eosinophilia (n=45) compared to those without (0.3×10(9)/L vs 0.15×10(9)/L; P<0.0001). Blood eosinophils correlated with both the percentage (ρ=0.535; P<0.0001) and number of sputum eosinophils (ρ=0.473; P<0.0001). Absolute blood eosinophil count was predictive of sputum eosinophilia (area under the curve =0.76, 95% confidence interval [CI] =0.67-0.84; P<0.0001). At a threshold of ≥0.3×10(9)/L (specificity =76%, sensitivity =60%, and positive likelihood ratio =2.5), peripheral blood eosinophil counts enabled identification of the presence or absence of sputum eosinophilia in 71% of the cases. A threshold of ≥0.4×10(9)/L had similar classifying ability but better specificity (91.7%) and higher positive likelihood ratio (3.7). In contrast, ≥0.2×10(9)/L offered a better sensitivity (91.1%) for ruling out sputum eosinophilia. There was a good agreement between two measurements of blood eosinophil count over a median of 28 days (intraclass correlation coefficient =0.8; 95% CI =0.66-0.88; P<0.0001). CONCLUSION: Peripheral blood eosinophil counts can help identify the presence or absence of sputum eosinophilia in stable COPD patients with a reasonable degree of accuracy

    Influence of age, past smoking, and disease severity on tlr2, neutrophilic inflammation, and MMP-9 Levels in COPD

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a common and serious respiratory disease, particularly in older individuals, characterised by fixed airway obstruction and persistent airway neutrophilia. The mechanisms that lead to these features are not well established. We investigated the contribution of age, prior smoking, and fixed airflow obstruction on sputum neutrophils, TLR2 expression, and markers of neutrophilic inflammation. Induced sputum from adults with COPD (n = 69) and healthy controls (n = 51) was examined. A sputum portion was dispersed, total, differential cell count and viability recorded, and supernatant assayed for CXCL8, matrix metalloproteinase- (MMP-) 9, neutrophil elastase, and soluble TLR2. Peripheral blood cells (n = 7) were stimulated and TLR2 activation examined. TLR2 levels were increased with ageing, while sputum neutrophils and total sputum MMP-9 levels increased with age, previous smoking, and COPD. In multivariate regression, TLR2 gene expression and MMP-9 levels were significant independent contributors to the proportion of sputum neutrophils after adjustment for age, prior smoking, and the presence of airflow obstruction. TLR2 stimulation led to enhanced release of MMP-9 from peripheral blood granulocytes. TLR2 stimulation activates neutrophils for MMP-9 release. Efforts to understand the mechanisms of TLR2 signalling and subsequent MMP-9 production in COPD may assist in understanding neutrophilic inflammation in COPD. © 2013 Jodie L. Simpson et al

    The effect of azithromycin in adults with stable neutrophilic COPD: A double blind randomised, placebo controlled trial

    Full text link
    Background: Chronic Obstructive Pulmonary Disease (COPD) is a progressive airway disease characterised by neutrophilic airway inflammation or bronchitis. Neutrophilic bronchitis is associated with both bacterial colonisation and lung function decline and is common in exacerbations of COPD. Despite current available therapies to control inflammation, neutrophilic bronchitis remains common. This study tested the hypothesis that azithromycin treatment, as an add-on to standard medication, would significantly reduce airway neutrophil and neutrophils chemokine (CXCL8) levels, as well as bacterial load. We conducted a randomised, double-blind, placebo-controlled study in COPD participants with stable neutrophilic bronchitis. Methods: Eligible participants (n = 30) were randomised to azithromycin 250 mg daily or placebo for 12 weeks in addition to their standard respiratory medications. Sputum was induced at screening, randomisation and monthly for a 12 week treatment period and processed for differential cell counts, CXCL8 and neutrophil elastase assessment. Quantitative bacteriology was assessed in sputum samples at randomisation and the end of treatment visit. Severe exacerbations where symptoms increased requiring unscheduled treatment were recorded during the 12 week treatment period and for 14 weeks following treatment. A sub-group of participants underwent chest computed tomography scans (n = 15). Results: Nine participants with neutrophilic bronchitis had a potentially pathogenic bacteria isolated and the median total bacterial load of all participants was 5.22×107 cfu/mL. Azithromycin treatment resulted in a non-significant reduction in sputum neutrophil proportion, CXCL8 levels and bacterial load. The mean severe exacerbation rate was 0.33 per person per 26 weeks in the azithromycin group compared to 0.93 exacerbations per person in the placebo group (incidence rate ratio (95%CI): 0.37 (0.11,1.21), p = 0.062). For participants who underwent chest CT scans, no alterations were observed. Conclusions: In stable COPD with neutrophilic bronchitis, add-on azithromycin therapy showed a trend to reduced severe exacerbations sputum neutrophils, CXCL8 levels and bacterial load. Future studies with a larger sample size are warranted. Trial Registration: Australian New Zealand Clinical Trials Registry ACTRN12609000259246. © 2014 Simpson et al

    Differential neutrophil activation in viral infections: Enhanced TLR-7/8-mediated CXCL8 release in asthma

    Get PDF
    © 2015 The Authors. Respirology published by Wiley Publishing Asia Pty Ltd on behalf of Asian Pacific Society of Respirology. Background and objective Respiratory viral infections are a major cause of asthma exacerbations. Neutrophils accumulate in the airways and the mechanisms that link neutrophilic inflammation, viral infections and exacerbations are unclear. This study aims to investigate anti-viral responses in neutrophils from patients with and without asthma and to investigate if neutrophils can be directly activated by respiratory viruses. Methods Neutrophils from peripheral blood from asthmatic and non-asthmatic individuals were isolated and stimulated with lipopolysaccharide (LPS) (1 μg/mL), f-met-leu-phe (fMLP) (100 nM), imiquimod (3 μg/mL), R848 (1.5 μg/mL), poly I:C (10 μg/mL), RV16 (multiplicity of infection (MOI)1), respiratory syncytial virus (RSV) (MOI1) or influenza virus (MOI1). Cell-free supernatants were collected after 1 h of neutrophil elastase (NE) and matrix metalloproteinase (MMP)-9 release, or after 24 h for CXCL8 release. Results LPS, fMLP, imiquimod and R848 stimulated the release of CXCL8, NE and MMP-9 whereas poly I:C selectively induced CXCL8 release only. R848-induced CXCL8 release was enhanced in neutrophils from asthmatics compared with non-asthmatic cells (P < 0.01). RSV triggered the release of CXCL8 and NE from neutrophils, whereas RV16 or influenza had no effect. Conclusion Neutrophils release CXCL8, NE and MMP-9 in response to viral surrogates with R848-induced CXCL8 release being specifically enhanced in asthmatic neutrophils. Toll-like receptor (TLR7/8) dysregulation may play a role in neutrophilic inflammation in viral-induced exacerbations. We aimed to investigate and compare neutrophil responses to bacterial compounds and viral mimetics as well as compare responses between people with and without asthma. We also investigated neutrophil responses to live respiratory viruses. Here we provide a novel comprehensive comparison showing differential and specific activation in innate immune cells. See Editorial, page 1

    MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD

    Full text link
    Influenza A virus (IAV) infections lead to severe inflammation in the airways. Patients with chronic obstructive pulmonary disease (COPD) characteristically have exaggerated airway inflammation and are more susceptible to infections with severe symptoms and increased mortality. The mechanisms that control inflammation during IAV infection and the mechanisms of immune dysregulation in COPD are unclear. We found that IAV infections lead to increased inflammatory and antiviral responses in primary bronchial epithelial cells (pBECs) from healthy nonsmoking and smoking subjects. In pBECs from COPD patients, infections resulted in exaggerated inflammatory but deficient antiviral responses. A20 is an important negative regulator of NF-κB-mediated inflammatory but not antiviral responses, and A20 expression was reduced in COPD. IAV infection increased the expression of miR-125a or -b, which directly reduced the expression of A20 and mitochondrial antiviral signaling (MAVS), and caused exaggerated inflammation and impaired antiviral responses. These events were replicated in vivo in a mouse model of experimental COPD. Thus, miR-125a or -b and A20 may be targeted therapeutically to inhibit excessive inflammatory responses and enhance antiviral immunity in IAV infections and in COPD

    Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma

    Get PDF
    Background Galectin-3 is a 32 kDa protein secreted by macrophages involved in processes such as cell activation, chemotaxis and phagocytosis. Galectin-3 has previously been shown to improve the ability of airway macrophages to ingest apoptotic cells (efferocytosis) in chronic obstructive pulmonary disease (COPD) and may be of interest in non-eosinophilic asthma (NEA) which is also characterised by impaired efferocytosis. It was hypothesised that the addition of exogenous galectin-3 to monocyte-derived macrophages (MDMs) derived from donors with NEA would enhance their ability to engulf apoptotic granulocytes. Methods Eligible non-smoking adults with asthma (n = 19), including 7 with NEA and healthy controls (n = 10) underwent a clinical assessment, venepuncture and sputum induction. MDMs were co-cultured with apoptotic granulocytes isolated from healthy donors with or without exogenous recombinant galectin-3 (50 μg/mL) and efferocytosis was assessed by flow cytometry. Galectin-3 expression and localisation in MDMs was visualised by immunofluorescence staining and fluorescence microscopy. Galectin-3, interleukin (IL)-6 and CXCL8 secretion were measured in cell culture supernatants by ELISA and cytometric bead array. Results Baseline efferocytosis (mean (±standard deviation)) was lower in participants with asthma (33.2 (±17.7)%) compared with healthy controls (45.3 (±15.9)%; p = 0.081). Efferocytosis did not differ between the participants with eosinophilic asthma (EA) (31.4 (±19.2)%) and NEA (28.7 (±21.5)%; p = 0.748). Addition of galectin-3 significantly improved efferocytosis in asthma, particularly in NEA (37.8 (±18.1)%) compared with baseline (30.4 (±19.7)%; p = 0.012). Efferocytosis was not associated with any of the clinical outcomes but was negatively correlated with sputum macrophage numbers (Spearman r = − 0.671; p = 0.017). Galectin-3 was diffusely distributed in most MDMs but formed punctate structures in 5% of MDMs. MDM galectin-3 secretion was lower in asthma (9.99 (2.67, 15.48) ng/mL) compared with the healthy controls (20.72 (11.28, 27.89) ng/mL; p = 0.044) while IL-6 and CXCL8 levels were similar. Conclusions Galectin-3 modulates macrophage function in asthma, indicating a potential role for galectin-3 to reverse impaired efferocytosis in NEA

    Anaesthetic considerations of adults with Morquio's syndrome - a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The anaesthetic management of patients with Morquio syndrome is complicated by a number of factors including odontoid hypoplasia, atlantoaxial instability, thoracic kyphosis, and deposition of mucopolysaccharides in the soft tissue of the oropharnyx.</p> <p>Case presentation</p> <p>Herein we describe the anaesthetic considerations and management of a 26 year old adult with Morquio syndrome, who presented for an elective hip replacement.</p> <p>Conclusion</p> <p>This report details an awake fiberoptic intubation in an adult with Morquio syndrome. We recommend that this approach be considered in patients with Morquio syndrome undergoing general anaesthesia.</p

    Pathways linked to unresolved inflammation and airway remodelling characterize the transcriptome in two independent severe asthma cohorts

    Get PDF
    Background and objective Severe asthma (SA) is a heterogeneous disease. Transcriptomic analysis contributes to the understanding of pathogenesis necessary for developing new therapies. We sought to identify and validate mechanistic pathways of SA across two independent cohorts. Methods Transcriptomic profiles from U-BIOPRED and Australian NOVocastrian Asthma cohorts were examined and grouped into SA, mild/moderate asthma (MMA) and healthy controls (HCs). Differentially expressed genes (DEGs), canonical pathways and gene sets were identified as central to SA mechanisms if they were significant across both cohorts in either endobronchial biopsies or induced sputum. Results Thirty-six DEGs and four pathways were shared across cohorts linking to tissue remodelling/repair in biopsies of SA patients, including SUMOylation, NRF2 pathway and oxidative stress pathways. MMA presented a similar profile to HCs. Induced sputum demonstrated IL18R1 as a shared DEG in SA compared with healthy subjects. We identified enrichment of gene sets related to corticosteroid treatment; immune-related mechanisms; activation of CD4+ T cells, mast cells and IL18R1; and airway remodelling in SA. Conclusion Our results identified differentially expressed pathways that highlight the role of CD4+ T cells, mast cells and pathways linked to ongoing airway remodelling, such as IL18R1, SUMOylation and NRF2 pathways, as likely active mechanisms in the pathogenesis of SA
    corecore