14,571 research outputs found

    On the Column Density of AGN Outflows: the Case of NGC 5548

    Get PDF
    We re-analyze the HST high resolution spectroscopic data of the intrinsic absorber in NGC 5548 and find that the C IV absorption column density is at least four times larger than previously determined. This increase arises from accounting for the kinematical nature of the absorber and from our conclusion that the outflow does not cover the narrow emission line region in this object. The improved column density determination begins to bridge the gap between the high column densities measured in the X-ray and the low ones previously inferred from the UV lines. Combined with our findings for outflows in high luminosity quasars these results suggest that traditional techniques for measuring column densities: equivalent width, curve-of-growth and Gaussian modeling, are of limited value when applied to absorption associated with AGN outflows.Comment: Published ApJ version (566, 699), including a new figure with FUSE data and a useful algebraic expression for the optical depth solutio

    Locally Optimally-emitting Clouds and the Narrow Emission Lines in Seyfert Galaxies

    Get PDF
    The narrow emission line spectra of active galactic nuclei are not accurately described by simple photoionization models of single clouds. Recent Hubble Space Telescope images of Seyfert 2 galaxies show that these objects are rich with ionization cones, knots, filaments, and strands of ionized gas. Here we extend to the narrow line region the ``locally optimally emitting cloud'' (LOC) model, in which the observed spectra are predominantly determined by powerful selection effects. We present a large grid of photoionization models covering a wide range of physical conditions and show the optimal conditions for producing many of the strongest emission lines. We show that the integrated narrow line spectrum can be predicted by an integration of an ensemble of clouds, and we present these results in the form of diagnostic line ratio diagrams making comparisons with observations. We also predict key diagnostic line ratios as a function of distance from the ionizing source, and compare these to observations. The predicted radial dependence of the [O III]/[O II] ratio may be matched to the observed one in NGC4151, if the narrow line clouds see a more intense continuum than we see. The LOC scenario when coupled with a simple Keplerian gravitational velocity field will quite naturally predict the observed line width versus critical density relationship. The influence of dust within the ionized portion of the clouds is discussed and we show that the more neutral gas is likely to be dusty, although a high ionization dust-free region is most likely present too. This argues for a variety of NLR cloud origins.Comment: 29 pages plus 16 figures, accepted for publication in Ap

    LRG-BEASTS III: Ground-based transmission spectrum of the gas giant orbiting the cool dwarf WASP-80

    Full text link
    We have performed ground-based transmission spectroscopy of the hot Jupiter orbiting the cool dwarf WASP-80 using the ACAM instrument on the William Herschel Telescope (WHT) as part of the LRG-BEASTS programme. This is the third paper of a ground-based transmission spectroscopy survey of hot Jupiters using low-resolution grism spectrographs. We observed two transits of the planet and have constructed transmission spectra spanning a wavelength range of 4640-8840A. Our transmission spectrum is inconsistent with a previously claimed detection of potassium in WASP-80b's atmosphere, and is instead most consistent with a haze. We also do not see evidence for sodium absorption at a resolution of 100A.Comment: 11 pages, 9 figures. Accepted for publication in MNRA

    Evidence for nonlinear diffusive shock acceleration of cosmic-rays in the 2006 outburst of the recurrent nova RS Ophiuchi

    Full text link
    Spectroscopic observations of the 2006 outburst of the recurrent nova RS Ophiuchi at both infrared (IR) and X-ray wavelengths have shown that the blast wave has decelerated at a higher rate than predicted by the standard test-particle adiabatic shock-wave model. Here we show that the observed evolution of the nova remnant can be explained by the diffusive shock acceleration of particles at the blast wave and the subsequent escape of the highest energy ions from the shock region. Nonlinear particle acceleration can also account for the difference of shock velocities deduced from the IR and X-ray data. The maximum energy that accelerated electrons and protons can have achieved in few days after outburst is found to be as high as a few TeV. Using the semi-analytic model of nonlinear diffusive shock acceleration developed by Berezhko & Ellison, we show that the postshock temperature of the shocked gas measured with RXTE/PCA and Swift/XRT imply a relatively moderate acceleration efficiency.Comment: Accepted for publication in ApJ

    Rayleigh scattering in the transmission spectrum of HAT-P-18b

    Get PDF
    We have performed ground-based transmission spectroscopy of the hot Jupiter HAT-P-18b using the ACAM instrument on the William Herschel Telescope (WHT). Differential spectroscopy over an entire night was carried out at a resolution of R400R \approx 400 using a nearby comparison star. We detect a bluewards slope extending across our optical transmission spectrum which runs from 4750 to 9250\AA. The slope is consistent with Rayleigh scattering at the equilibrium temperature of the planet (852K). We do not detect enhanced sodium absorption, which indicates that a high-altitude haze is masking the feature and giving rise to the Rayleigh slope. This is only the second discovery of a Rayleigh scattering slope in a hot Jupiter atmosphere from the ground, and our study illustrates how ground-based observations can provide transmission spectra with precision comparable to the Hubble Space Telescope.Comment: 11 pages, 9 figures, accepted for publication in MNRA

    Language skills of profoundly deaf children who received cochlear implants under 12 months of age: a preliminary study

    Get PDF
    Conclusion. This study demonstrated that children who receive a cochlear implant below the age of 2 years obtain higher mean receptive and expressive language scores than children implanted over the age of 2 years. Objective. The purpose of this study was to compare the receptive and expressive language skills of children who received a cochlear implant before 1 year of age to the language skills of children who received an implant between 1 and 3 years of age. Subjects and methods. Standardized language measures, the Reynell Developmental Language Scale (RDLS) and the Preschool Language Scale (PLS), were used to assess the receptive and expressive language skills of 91 children who received an implant before their third birthday. Results. The mean receptive and expressive language scores for the RDLS and the PLS were slightly higher for the children who were implanted below the age of 2 years compared with the children who were implanted over 2 years old. For the PLS, both the receptive and expressive mean standard scores decreased with increasing age at implantation
    corecore