3,340 research outputs found

    Uncovering intrinsic connectional architecture of functional networks in awake rat brain

    Get PDF
    Intrinsic connectional architecture of the brain is a crucial element in understanding the governing principle of brain organization. To date, enormous effort has been focused on addressing this issue in humans by combining resting-state functional magnetic resonance imaging (rsfMRI) with other techniques. However, this research area is significantly underexplored in animals, perhaps because of confounding effects of anesthetic agents used in most animal experiments on functional connectivity. To bridge this gap, we have systematically investigated the intrinsic connectional architecture in the rodent brain by using a previously established awake-animal imaging model. First, group independent component analysis was applied to the rsfMRI data to extract elementary functional clusters of the brain. The connectional relationships between these clusters, as evaluated by partial correlation analysis, were then used to construct a graph of whole-brain neural network. This network exhibited the typical features of small-worldness and strong community structures seen in the human brain. Finally, the whole-brain network was segregated into community structures using a graph-based analysis. The results of this work provided a functional atlas of intrinsic connectional architecture of the rat brain at both intraregion and interregion levels. More importantly, the current work revealed that functional networks in rats are organized in a nontrivial manner and conserve fundamental topological properties that are also seen in the human brain. Given the high psychopathological relevance of network organization of the brain, this study demonstrated the feasibility of studying mechanisms and therapies of multiple neurological and psychiatric diseases through translational research

    Intrinsic organization of the anesthetized brain

    Get PDF
    The neural mechanism of unconsciousness has been a major unsolved question in neuroscience despite its vital role in brain states like coma and anesthesia. The existing literature suggests that neural connections, information integration, and conscious states are closely related. Indeed, alterations in several important neural circuitries and networks during unconscious conditions have been reported. However, how the whole-brain network is topologically reorganized to support different patterns of information transfer during unconscious states remains unknown. Here we directly compared whole-brain neural networks in awake and anesthetized states in rodents. Consistent with our previous report, the awake rat brain was organized in a nontrivial manner and conserved fundamental topological properties in a way similar to the human brain. Strikingly, these topological features were well maintained in the anesthetized brain. Local neural networks in the anesthetized brain were reorganized with altered local network properties. The connectional strength between brain regions was also considerably different between the awake and anesthetized conditions. Interestingly, we found that long-distance connections were not preferentially reduced in the anesthetized condition, arguing against the hypothesis that loss of long-distance connections is characteristic to unconsciousness. These findings collectively show that the integrity of the whole-brain network can be conserved between widely dissimilar physiologic states while local neural networks can flexibly adapt to new conditions. They also illustrate that the governing principles of intrinsic brain organization might represent fundamental characteristics of the healthy brain. With the unique spatial and temporal scales of resting-state fMRI, this study has opened a new avenue for understanding the neural mechanism of (un)consciousness

    Competitive champions versus cooperative advocates: Understanding advocates for evaluation

    Get PDF
    Abstract Background: Evaluation offers non-profit organizations an opportunity to improve their services, demonstrate achievements, and be accountable. The extant literature identifies individuals who can enhance the uptake of evaluation as evaluation champions. However, a paucity of detail is available regarding how to identify them and the support they require. Purpose: This research investigated the characteristics and motivations of evaluation champions and examined how they promoted and embedded evaluation in an organizational system. Setting: Australian human and social service non-profit organizations. Research design: Drawing upon the literature and social interdependence theory, the research took an interpretivist perspective to collaboratively generate knowledge about evaluation champions. The aim was to understand and develop a reconstruction of the characteristics of individuals. This article constitutes a component of a larger research project. Data Collection and Analysis: This research used purposive sampling to recruit champions working in Australian non-profit organizations, who were identified via descriptive criteria gleaned from a literature review. The research involved interviewing 17 champions, four of whom also participated in organizational case studies. Analysis of the semi-structured interviews and case studies generated information about the activities, strategies, motivations, and attributes of individuals who championed and advocated for evaluation. Findings: This article argues that evaluation advocates is a preferable descriptor when attempting to embed evaluation by cultivating mutually beneficial interactions and cooperative working relationships. This research defines evaluation advocates as individuals who motivate others and provide energy, interest, and enthusiasm by connecting evaluation with colleagues’ personal aspirations and the organizational goals to make judgements about effectiveness. This article includes a field guide to facilitate evaluation advocates’ identification, recruitment, support, and development

    The grain microstructure of polycrystalline materials as revealed by the combined use of synchrotron X-ray imaging and diffraction techniques

    No full text
    National audienceCombining the principles of x-ray imaging and diffraction techniques, it has recently become possible to map the 3D grain microstructure in a range of polycrystalline materials. Associating this 3D orientation mapping with conventional attenuation and/or phase contrast tomography yields a non-destructive characterization technique, enabling time-lapse observation of dynamic processes in the bulk of structural materials. The capabilities and limitations., as well as future perspectives of this new characterization approach will be discussed and illustrated on selected application examples

    Characterization of polycrystalline materials by X-ray diffraction contrast tomography

    No full text
    National audienceSynchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for characterizing the grain microstructure in a variety of polycrystalline mono-and multiphase materials. Direct visualization of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques is possible, but restricted to specific material systems (Ludwig 2009b). However, conventional attenuation or phase contrast imaging techniques do not give access to the crystallographic orientation of the grains and additional diffraction measurements are required. On the other hand, three-dimensional X-ray diffraction methods like Differential Aperture X-ray Microscopy (DAXM, (Larson, 2002) or 3D X-ray Diffraction Microscopy (3DXRD) (Poulsen, 2004) can analyse the 3D grain structure and/or elastic strain tensors of individual grains in polycrystalline materials, but are blind to the microstructural features (inclusions, cracks and porosity) visible in attenuation and/or phase contrast imaging techniques . A recent extension of the 3DXRD methodology, termed X-ray diffraction contrast tomography (DCT) (Ludwig 2009a), combines the principles of 3DXRD and X-ray absorption tomography. With a single scan, DCT can provide simultaneous access to the grain shape, crystallographic orientation, full elastic strain tensor and the local attenuation coefficient distribution in three dimensions. The technique applies to a range of plastically undeformed, polycrystalline mono-phase materials, fulfilling some conditions on grain size and texture. The straightforward combination with in-situ microtomographic observations opens interesting new possibilities for the characterization of microstructure related damage and deformation mechanisms in these materials

    A potential role for adjunctive vitamin D therapy in the management of weight gain and metabolic side effects of second-generation antipsychotics

    Get PDF
    Second-generation antipsychotic (SGA) medications introduced about 20 years ago are increasingly used to treat psychiatric illnesses in children and adolescents. There has been a five-fold increase in the use of these medications in U.S. children and adolescents in the past decade. However, there has also been a parallel rise in the incidence of side effects associated with these medications, such as obesity, dyslipidemia, insulin resistance, and diabetes mellitus. Despite the severity of these complications and their financial impact on the national healthcare budget, there is neither a clear understanding of the mechanisms contributing to these side effects nor the best ways to address them. Studies that examined lifestyle modification and pharmaceutical agents have yielded mixed results. Therefore, clinical studies using agents, such as vitamin D, which are inexpensive, readily available, with low side effects profile, and have mechanisms to counteract the metabolic side effects of SGA agents, are warranted. Vitamin D is a prohormone with skeletal and extraskeletal properties that could potentially reduce the severity of these metabolic side effects. Its role as an adjunctive therapy for the management of metabolic side effects of SGA agents has not been adequately studied. Effective strategies to curb these side effects will improve the overall health of youths with psychiatric illnesses who receive SGAs. Herein we present a pilot study on the use of vitamin D in patients on treatment with SGAs

    Keeping Weight Off: study protocol of an RCT to investigate brain changes associated with mindfulness-based stress reduction

    Get PDF
    INTRODUCTION: Obesity is a growing epidemic fuelled by unhealthy behaviours and associated with significant comorbidities and financial costs. While behavioural interventions produce clinically meaningful weight loss, weight loss maintenance is challenging. This may partially be due to failure to target stress and emotional reactivity. Mindfulness-based stress reduction (MBSR) reduces stress and emotional reactivity and may be a useful tool for behaviour change maintenance. This study seeks to provide a mechanistic understanding for clinical trials of the benefits of MBSR for weight loss maintenance by examining changes in functional connectivity (FC) and the association of these changes with clinical outcomes. METHODS AND ANALYSIS: Community-dwelling individuals (n=80) who intentionally lost \u3e /=5% of their body weight in the past year will be recruited and randomised to an MBSR programme or educational control. FC using resting-state functional MRI will be measured at baseline and 8 weeks. Psychological factors, health behaviours, body mass index and waist circumference will be measured at baseline, 8 weeks and 6 months post intervention. A 12-month telephone follow-up will assess self-reported weight. Analyses will characterise FC changes in response to MBSR in comparison with a control condition, assess the relationship between baseline FC status and pre-post MBSR changes in FC and investigate the association of FC change with changes in psychological factors and weight loss maintenance. ETHICS AND DISSEMINATION: The University of Massachusetts Medical School Institutional Review Board has approved this study, Declaration of Helsinki protocols are being followed, and patients will give written informed consent. The Independent Monitoring Committee will monitor protocol adherence. Results from the study will be disseminated to the medical community at conferences and submitted for publication in peer-reviewed journals when the last patient included has been followed up for 12 months. TRIAL REGISTRATION NUMBER: NCT02189187

    A Population of Faint Non-Transient Low Mass Black Hole Binaries

    Full text link
    We study the thermal and viscous stability of accretion flows in Low Mass Black Hole Binaries (LMBHBs). We consider a model in which an inner advection-dominated accretion flow (ADAF) is surrounded by a geometrically thin accretion disk, the transition between the two zones occurring at a radius R_tr. In all the known LMBHBs, R_tr appears to be such that the outer disks could suffer from a global thermal-viscous instability. This instability is likely to cause the transient behavior of these systems. However, in most cases, if R_tr were slightly larger than the estimated values, the systems would be globally stable. This suggests that a population of faint persistent LMBHBs with globally stable outer disks could be present in the Galaxy. Such LMBHBs would be hard to detect because they would lack large amplitude outbursts, and because their ADAF zones would have very low radiative efficiencies, making the systems very dim. We present model spectra of such systems covering the optical and X-ray bands.Comment: LateX, 37 pages, 11 figures; Accepted for publication in The Astrophysical Journa
    • 

    corecore